Snap-through of a bistable beam using piezoelectric actuation

IF 2.2 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Intelligent Material Systems and Structures Pub Date : 2024-07-25 DOI:10.1177/1045389x241259371
Taha Ajnada, Yves Bernard, Laurent Daniel
{"title":"Snap-through of a bistable beam using piezoelectric actuation","authors":"Taha Ajnada, Yves Bernard, Laurent Daniel","doi":"10.1177/1045389x241259371","DOIUrl":null,"url":null,"abstract":"The paper presents the snap-through of a bistable system using piezoelectric (PZ) actuation. The bistable system consists of a pre-buckled beam fixed between two jaws. The bistability and snap-through of the beam are modelled using two approaches. An analytical model is first implemented. The results are compared to a full finite element simulation. These modelling approaches are used to find the optimal positioning of the PZ patches used for switching. The PZ-actuated snap-through is then modelled using both an analytical equivalent moment model and finite element simulations. An experimental validation setup is developed accordingly. The validation addresses all aspects of the modelling: bistability, snap-through and PZ-actuated snap-through. For the latter two configurations were studied, namely a switching actuated by a single PZ patch or by two patches. A remarkable agreement is found between both modelling approaches and experimental measurements. The proposed analytical modelling tool can be used for rapid pre-design of bistable devices. It is for instance shown that a centimetre-scale steel-device with an initial transverse displacement about 1 mm can be switched with a few-Newton force or alternatively with a few hundreds of Volts using a PZ patch.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241259371","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the snap-through of a bistable system using piezoelectric (PZ) actuation. The bistable system consists of a pre-buckled beam fixed between two jaws. The bistability and snap-through of the beam are modelled using two approaches. An analytical model is first implemented. The results are compared to a full finite element simulation. These modelling approaches are used to find the optimal positioning of the PZ patches used for switching. The PZ-actuated snap-through is then modelled using both an analytical equivalent moment model and finite element simulations. An experimental validation setup is developed accordingly. The validation addresses all aspects of the modelling: bistability, snap-through and PZ-actuated snap-through. For the latter two configurations were studied, namely a switching actuated by a single PZ patch or by two patches. A remarkable agreement is found between both modelling approaches and experimental measurements. The proposed analytical modelling tool can be used for rapid pre-design of bistable devices. It is for instance shown that a centimetre-scale steel-device with an initial transverse displacement about 1 mm can be switched with a few-Newton force or alternatively with a few hundreds of Volts using a PZ patch.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用压电致动器实现双稳态横梁的快速通过
本文介绍了使用压电(PZ)驱动的双稳态系统的快速通过。双稳态系统由固定在两个夹钳之间的预扣梁组成。采用两种方法对梁的双稳态性和快速通过进行建模。首先建立一个分析模型。将结果与完整的有限元模拟进行比较。这些建模方法用于找到用于开关的 PZ 贴片的最佳位置。然后,使用等效力矩分析模型和有限元模拟对 PZ 驱动的快穿进行建模。相应地,还开发了一套实验验证装置。验证涉及建模的各个方面:双稳态、快通和 PZ 驱动快通。对于后者,研究了两种配置,即由单个 PZ 贴片或两个贴片驱动的开关。两种建模方法与实验测量结果之间存在明显的一致性。所提出的分析建模工具可用于双稳态器件的快速预设计。例如,研究表明,一个初始横向位移约为 1 毫米的厘米级钢制器件可以通过几牛顿的力或几百伏特的 PZ 贴片进行切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
期刊最新文献
Effects of low cycle fatigue and inelastic buckling on the superelasticity and energy dissipation capacity of NiTi SMA rebar. Experimental study of centrifugal pumping of magnetorheological fluid. A modified parametric model to predict visco-elastic properties of magneto-rheological elastomers at non-LVE region Simultaneous position and force control of a SMA-actuated continuum robotic module A facile method to fabricate auxetic polymer foams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1