Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region

IF 1.4 3区 地球科学 Q3 OCEANOGRAPHY Acta Oceanologica Sinica Pub Date : 2024-07-27 DOI:10.1007/s13131-024-2323-x
Bowen Sun, Shuchang Xu, Zhankun Wang, Yujie Feng, Baofu Li
{"title":"Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region","authors":"Bowen Sun, Shuchang Xu, Zhankun Wang, Yujie Feng, Baofu Li","doi":"10.1007/s13131-024-2323-x","DOIUrl":null,"url":null,"abstract":"<p>Except for conventional mesoscale eddies, there are also abundant warm cyclonic eddies (WCEs) and cold anticyclonic eddies (CAEs) in the global ocean. Based on the global mesoscale eddy trajectory atlas product, satellite altimetric and remote sensing datasets, and three-dimensional temperature/salinity dataset, spatiotemporal features of WCEs and CAEs are compared with traditional cold cyclonic eddies and warm anticyclonic eddies in the Kuroshio Extension (KE; 28°–43°N, 140°–170°E) region. Characteristics of abnormal eddies like radius, amplitude, eddy kinetic energy, and proportion in all eddies behave in significant asymmetry on the north and south sides of the KE jet. Unlike eddies in the general sense, temporal feature analysis reveals that it is more favorable to the formation and maintenance of WCEs and CAEs in summer and autumn, while winter is the opposite. The spatiotemporal variation of abnormal eddies is likely because the marine environment varying with time and space. Statistically, proportion of abnormal eddies increases rapidly in decaying stage during the whole eddy lifespan, resulting in smaller average radius, amplitude, sea surface temperature anomaly and sea surface height anomaly compared to normal ones. The three-dimensional composite structures for four types of eddies expose that the difference between abnormal and conventional eddies is not just limited to the sea surface, but also exists within the water below the sea surface. Vertical structures also indicate that the anomalous temperature signal is confined in the water from the sea surface to layers at about 30 m in the KE region.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"61 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-024-2323-x","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Except for conventional mesoscale eddies, there are also abundant warm cyclonic eddies (WCEs) and cold anticyclonic eddies (CAEs) in the global ocean. Based on the global mesoscale eddy trajectory atlas product, satellite altimetric and remote sensing datasets, and three-dimensional temperature/salinity dataset, spatiotemporal features of WCEs and CAEs are compared with traditional cold cyclonic eddies and warm anticyclonic eddies in the Kuroshio Extension (KE; 28°–43°N, 140°–170°E) region. Characteristics of abnormal eddies like radius, amplitude, eddy kinetic energy, and proportion in all eddies behave in significant asymmetry on the north and south sides of the KE jet. Unlike eddies in the general sense, temporal feature analysis reveals that it is more favorable to the formation and maintenance of WCEs and CAEs in summer and autumn, while winter is the opposite. The spatiotemporal variation of abnormal eddies is likely because the marine environment varying with time and space. Statistically, proportion of abnormal eddies increases rapidly in decaying stage during the whole eddy lifespan, resulting in smaller average radius, amplitude, sea surface temperature anomaly and sea surface height anomaly compared to normal ones. The three-dimensional composite structures for four types of eddies expose that the difference between abnormal and conventional eddies is not just limited to the sea surface, but also exists within the water below the sea surface. Vertical structures also indicate that the anomalous temperature signal is confined in the water from the sea surface to layers at about 30 m in the KE region.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黑潮延伸区四种中尺度涡旋的时空特征和垂直结构
除传统的中尺度漩涡外,全球海洋还存在丰富的暖旋涡(WCE)和冷反气旋漩涡(CAE)。基于全球中尺度漩涡轨迹图集产品、卫星测高和遥感数据集以及三维温度/盐度数据集,比较了黑潮扩展区(KE;28°-43°N,140°-170°E)WCEs 和 CAEs 与传统的冷气旋漩涡和暖反气旋漩涡的时空特征。异常漩涡的特征,如半径、振幅、漩涡动能和在所有漩涡中的比例,在 KE 射流的南北两侧表现出明显的不对称性。与一般意义上的漩涡不同,时间特征分析显示,夏秋两季更有利于 WCE 和 CAE 的形成和维持,而冬季则相反。异常漩涡的时空变化可能与海洋环境的时空变化有关。据统计,在漩涡的整个生命周期中,异常漩涡的比例在衰减阶段迅速增加,导致其平均半径、振幅、海面温度异常和海面高度异常均小于正常漩涡。四种类型漩涡的三维复合结构表明,异常漩涡与常规漩涡的区别不仅局限于海面,还存在于海面以下的水体中。垂直结构也表明,异常温度信号局限于从海面到 KE 区域约 30 米处的水层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Oceanologica Sinica
Acta Oceanologica Sinica 地学-海洋学
CiteScore
2.50
自引率
7.10%
发文量
3884
审稿时长
9 months
期刊介绍: Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal. The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences. It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.
期刊最新文献
Evaluation and projection of marine heatwaves in the South China Sea: insights from CMIP6 multi-model ensemble Potential morphological responses of an artificial beach to a flood in extreme events: field observation and numerical modelling Alleviated photoinhibition on nitrification in the Indian Sector of the Southern Ocean Synthesizing high-resolution satellite salinity data based on multi-fractal fusion Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1