Quantitative analysis and prediction of the sound field convergence zone in mesoscale eddy environment based on data mining methods

IF 1.4 3区 地球科学 Q3 OCEANOGRAPHY Acta Oceanologica Sinica Pub Date : 2024-07-27 DOI:10.1007/s13131-024-2328-5
Ming Li, Yuhang Liu, Yiyuan Sun, Kefeng Liu
{"title":"Quantitative analysis and prediction of the sound field convergence zone in mesoscale eddy environment based on data mining methods","authors":"Ming Li, Yuhang Liu, Yiyuan Sun, Kefeng Liu","doi":"10.1007/s13131-024-2328-5","DOIUrl":null,"url":null,"abstract":"<p>The mesoscale eddy (ME) has a significant influence on the convergence effect in deep-sea acoustic propagation. This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone (CZ) characteristics. Based on the Gaussian vortex model, we construct various sound propagation scenarios under different eddy conditions, and carry out sound propagation experiments to obtain simulation samples. With a large number of samples, we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters. The sensitivity of eddy indicators to the CZ is quantitatively analyzed. Then, we adopt the machine learning (ML) algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters. Through the research, we can express the influence of ME on the CZ quantitatively, and achieve the rapid prediction of CZ parameters in ocean eddies. The prediction accuracy (<i>R</i>) of the CZ distance (mean <i>R</i>: 0.981 5) is obviously better than that of the CZ width (mean <i>R</i>: 0.872 8). Among the three ML algorithms, Gradient Boosting Decision Tree has the best prediction ability (root mean square error (RMSE): 0.136), followed by Random Forest (RMSE: 0.441) and Extreme Learning Machine (RMSE: 0.518).</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"20 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-024-2328-5","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The mesoscale eddy (ME) has a significant influence on the convergence effect in deep-sea acoustic propagation. This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone (CZ) characteristics. Based on the Gaussian vortex model, we construct various sound propagation scenarios under different eddy conditions, and carry out sound propagation experiments to obtain simulation samples. With a large number of samples, we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters. The sensitivity of eddy indicators to the CZ is quantitatively analyzed. Then, we adopt the machine learning (ML) algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters. Through the research, we can express the influence of ME on the CZ quantitatively, and achieve the rapid prediction of CZ parameters in ocean eddies. The prediction accuracy (R) of the CZ distance (mean R: 0.981 5) is obviously better than that of the CZ width (mean R: 0.872 8). Among the three ML algorithms, Gradient Boosting Decision Tree has the best prediction ability (root mean square error (RMSE): 0.136), followed by Random Forest (RMSE: 0.441) and Extreme Learning Machine (RMSE: 0.518).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据挖掘方法的中尺度涡环境声场汇聚区定量分析与预测
中尺度涡(ME)对深海声波传播中的辐合效应有重要影响。本文利用统计方法表达了中尺度涡(ME)条件与辐合带(CZ)特征之间的定量关系。基于高斯涡模型,我们构建了不同涡流条件下的各种声传播场景,并进行声传播实验以获得模拟样本。在大量样本的基础上,我们首先采用统一回归法建立了涡流条件与 CZ 参数之间的分析关系。定量分析了涡度指标对 CZ 的敏感性。然后,我们采用机器学习(ML)算法,通过探索多个漩涡指标与 CZ 参数之间的非线性关系,建立 CZ 参数的预测模型。通过研究,我们可以定量表达ME对CZ的影响,实现对海洋漩涡中CZ参数的快速预测。CZ距离的预测精度(R)(平均R:0.981 5)明显优于CZ宽度的预测精度(平均R:0.872 8)。在三种 ML 算法中,梯度提升决策树的预测能力最好(均方根误差为 0.136),其次是随机森林算法(均方根误差为 0.441)和极限学习机算法(均方根误差为 0.518)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Oceanologica Sinica
Acta Oceanologica Sinica 地学-海洋学
CiteScore
2.50
自引率
7.10%
发文量
3884
审稿时长
9 months
期刊介绍: Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal. The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences. It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.
期刊最新文献
Evaluation and projection of marine heatwaves in the South China Sea: insights from CMIP6 multi-model ensemble Potential morphological responses of an artificial beach to a flood in extreme events: field observation and numerical modelling Alleviated photoinhibition on nitrification in the Indian Sector of the Southern Ocean Synthesizing high-resolution satellite salinity data based on multi-fractal fusion Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1