Xiaogang Li, Junya Xiong, Zhaozhong Yang, Jinyi Zhu, Weizhe Li
{"title":"Microwave-sintered mullite structural ceramics based on low-grade bauxite applied for fracturing proppants","authors":"Xiaogang Li, Junya Xiong, Zhaozhong Yang, Jinyi Zhu, Weizhe Li","doi":"10.1002/ese3.1783","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to assess the feasibility of manufacturing fracturing proppants by microwave sintering and using low-grade bauxite as raw material. The effects of microwave hotspot SiC and sintering additive MnO<sub>2</sub> content on the performance of the mullite-based structural materials were studied, respectively. The optimum sintering condition was determined by single-factor experiments. The sintering process and mechanism were explored based on the analysis of physicochemical properties, phase transitions, and microstructure. The results showed that (1) mullite ceramic composites could be successfully prepared only with SiC added and with poor interparticle bonding microstructure. (2) With the addition of MnO<sub>2</sub> and CaO, the granular-shaped mullite crystals transformed into rod-like mullite crystals, forming a net structure. (3) As the input power increased, the overfast sintering rate would reduce proppants' mechanical properties, and it was also necessary to select a reasonable sintering time to avoid overburning. (4) When the mass ratio of MnO<sub>2</sub>:CaO:SiC:bauxite was 2:1.5:12:84.5 and under the sintering condition of 1000 W, 2 h, the performance (breakage ratio of 8.5% under 28 MPa closed pressure, apparent density of 2.58 g/cm<sup>3</sup>, turbidity of 52 FTU, and acid solubility of 6.77%) could meet the requirements of the Chinese Petroleum and Gas Industry Standard (SY/T 5108–2014). This study provides a powerful way for reducing the fracturing cost, which not only improves the low-grade bauxite utilization scale within the ceramic industry, but also expands the application of microwave sintering technology in mullite structural materials for the petroleum and gas industry.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 8","pages":"3243-3257"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1783","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1783","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to assess the feasibility of manufacturing fracturing proppants by microwave sintering and using low-grade bauxite as raw material. The effects of microwave hotspot SiC and sintering additive MnO2 content on the performance of the mullite-based structural materials were studied, respectively. The optimum sintering condition was determined by single-factor experiments. The sintering process and mechanism were explored based on the analysis of physicochemical properties, phase transitions, and microstructure. The results showed that (1) mullite ceramic composites could be successfully prepared only with SiC added and with poor interparticle bonding microstructure. (2) With the addition of MnO2 and CaO, the granular-shaped mullite crystals transformed into rod-like mullite crystals, forming a net structure. (3) As the input power increased, the overfast sintering rate would reduce proppants' mechanical properties, and it was also necessary to select a reasonable sintering time to avoid overburning. (4) When the mass ratio of MnO2:CaO:SiC:bauxite was 2:1.5:12:84.5 and under the sintering condition of 1000 W, 2 h, the performance (breakage ratio of 8.5% under 28 MPa closed pressure, apparent density of 2.58 g/cm3, turbidity of 52 FTU, and acid solubility of 6.77%) could meet the requirements of the Chinese Petroleum and Gas Industry Standard (SY/T 5108–2014). This study provides a powerful way for reducing the fracturing cost, which not only improves the low-grade bauxite utilization scale within the ceramic industry, but also expands the application of microwave sintering technology in mullite structural materials for the petroleum and gas industry.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.