A many-objective evolutionary algorithm based on interaction force and hybrid optimization mechanism

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2024-07-25 DOI:10.1016/j.swevo.2024.101667
{"title":"A many-objective evolutionary algorithm based on interaction force and hybrid optimization mechanism","authors":"","doi":"10.1016/j.swevo.2024.101667","DOIUrl":null,"url":null,"abstract":"<div><p>In many-objective optimization, both convergence and diversity are equally important. However, in high-dimensional spaces, traditional decomposition-based many-objective evolutionary algorithms struggle to ensure population diversity. Conversely, traditional Pareto dominance-based many-objective evolutionary algorithms face challenges in ensuring population convergence. In this paper, we propose a novel many-objective evolutionary algorithm based on interaction force and hybrid optimization mechanism (MaOEAIH) for effectively addressing the difficulty in balancing convergence and diversity. First, we use the concept of interaction force to simulate the convergence (akin to gravity) and diversity (repulsion) of the population. Subsequently, we design an optimization mechanism that combines decomposition and Pareto dominance to enhance the convergence and diversity of the population separately. Simultaneously, to eliminate dominance resistance solutions, we propose a quartile method based on boundary solutions. Additionally, Random perturbations are also introduced to certain individuals within the population to facilitate their escape from local optima. MaOEAIH is compared with some state-of-the-art algorithms on 31 well-known test problems with 3-15 objectives. The experimental results show that, compared to other algorithms, MaOEAIH not only obtains solution sets of higher quality when dealing with different types of many-objective optimization problems, but also effectively addresses key challenges including insufficient selection pressure, difficulty balancing convergence and diversity, and susceptibility to population entrapment in local optima within many-objective optimization scenarios.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002050","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In many-objective optimization, both convergence and diversity are equally important. However, in high-dimensional spaces, traditional decomposition-based many-objective evolutionary algorithms struggle to ensure population diversity. Conversely, traditional Pareto dominance-based many-objective evolutionary algorithms face challenges in ensuring population convergence. In this paper, we propose a novel many-objective evolutionary algorithm based on interaction force and hybrid optimization mechanism (MaOEAIH) for effectively addressing the difficulty in balancing convergence and diversity. First, we use the concept of interaction force to simulate the convergence (akin to gravity) and diversity (repulsion) of the population. Subsequently, we design an optimization mechanism that combines decomposition and Pareto dominance to enhance the convergence and diversity of the population separately. Simultaneously, to eliminate dominance resistance solutions, we propose a quartile method based on boundary solutions. Additionally, Random perturbations are also introduced to certain individuals within the population to facilitate their escape from local optima. MaOEAIH is compared with some state-of-the-art algorithms on 31 well-known test problems with 3-15 objectives. The experimental results show that, compared to other algorithms, MaOEAIH not only obtains solution sets of higher quality when dealing with different types of many-objective optimization problems, but also effectively addresses key challenges including insufficient selection pressure, difficulty balancing convergence and diversity, and susceptibility to population entrapment in local optima within many-objective optimization scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相互作用力和混合优化机制的多目标进化算法
在多目标优化中,收敛性和多样性同等重要。然而,在高维空间中,传统的基于分解的多目标进化算法很难确保群体的多样性。相反,传统的基于帕累托优势的多目标进化算法在确保群体收敛性方面也面临挑战。本文提出了一种基于交互力和混合优化机制的新型多目标进化算法(MaOEAIH),以有效解决收敛性和多样性难以兼顾的问题。首先,我们利用相互作用力的概念来模拟种群的收敛性(类似重力)和多样性(排斥力)。随后,我们设计了一种结合分解和帕累托优势的优化机制,分别增强种群的收敛性和多样性。同时,为了消除优势抵抗解,我们提出了一种基于边界解的四分法。此外,我们还为群体中的某些个体引入了随机扰动,以帮助它们摆脱局部最优状态。我们将 MaOEAIH 与一些最先进的算法在 31 个著名的 3-15 目标测试问题上进行了比较。实验结果表明,与其他算法相比,在处理不同类型的多目标优化问题时,MaOEAIH 不仅能获得质量更高的解集,还能有效解决多目标优化场景中存在的选择压力不足、收敛性和多样性难以平衡、种群易陷入局部最优等关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
A cloud 15kV-HDPE insulator leakage current classification based improved particle swarm optimization and LSTM-CNN deep learning approach A multi-strategy optimizer for energy minimization of multi-UAV-assisted mobile edge computing An archive-assisted multi-modal multi-objective evolutionary algorithm Historical knowledge transfer driven self-adaptive evolutionary multitasking algorithm with hybrid resource release for solving nonlinear equation systems Expected coordinate improvement for high-dimensional Bayesian optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1