{"title":"Pesticide Engineering from Natural Vanillin: Recent Advances and a Perspective","authors":"Mingshu Lou, Sha Li, Fangru Jin, Tangbing Yang, Runjiang Song, Baoan Song","doi":"10.1016/j.eng.2024.06.015","DOIUrl":null,"url":null,"abstract":"Pesticide ecological safety continues to be a hot issue. The inherent biosafety and physiological functions of vanillin, a widely used natural flavor in food additives, have unlocked numerous applications in the medical field, leading to a plethora of pharmaceutically active derivatives and commercial drugs. Despite its extensive use in pharmaceutical discovery and the food industry, vanillin’s potential in the domain of green pesticide development has only recently come to light. Significantly, its advantages of safety and low price make vanillin ideal for green pesticide research and development (R&D). In this context, this review illuminates the research on vanillin’s transformation into a suite of innovative agrochemicals. By delving into the design, synthesis, action mechanisms, and bio-safety of these vanillin-derived compounds, we uncover novel pathways for sustainable agriculture. Further possible directions for the exploration of this substance are also outlined. We believe that this story about vanillin will serve as a source of inspiration for those seeking to derive innovative ideas from natural substances, particularly in the realm of green pesticide R&D.","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.eng.2024.06.015","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pesticide ecological safety continues to be a hot issue. The inherent biosafety and physiological functions of vanillin, a widely used natural flavor in food additives, have unlocked numerous applications in the medical field, leading to a plethora of pharmaceutically active derivatives and commercial drugs. Despite its extensive use in pharmaceutical discovery and the food industry, vanillin’s potential in the domain of green pesticide development has only recently come to light. Significantly, its advantages of safety and low price make vanillin ideal for green pesticide research and development (R&D). In this context, this review illuminates the research on vanillin’s transformation into a suite of innovative agrochemicals. By delving into the design, synthesis, action mechanisms, and bio-safety of these vanillin-derived compounds, we uncover novel pathways for sustainable agriculture. Further possible directions for the exploration of this substance are also outlined. We believe that this story about vanillin will serve as a source of inspiration for those seeking to derive innovative ideas from natural substances, particularly in the realm of green pesticide R&D.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.