Yongqi Zhang, Lun Zhao, Zhonghua Shen, Zeshan Abbas, Tao Gong, Wei Chen, Xu Long, Vivek Patel, Md Shafiqul Islam
{"title":"Exploring the impact of wire core diameter on microstructure and joint properties in ultrasonic wire harness welding","authors":"Yongqi Zhang, Lun Zhao, Zhonghua Shen, Zeshan Abbas, Tao Gong, Wei Chen, Xu Long, Vivek Patel, Md Shafiqul Islam","doi":"10.1177/14644207241262863","DOIUrl":null,"url":null,"abstract":"The present study investigates ultrasonic metal welding to manufacture 10 mm<jats:sup>2</jats:sup> copper (Cu) wire joints with different core diameters. The primary purpose of this study is to explore the influence of wire core diameter on the performance of ultrasonic welded joints. Wire core diameter is positively correlated with the peeling resistance of the joint. Superior mechanical properties of the joint are achieved with an increased diameter of the wire core. The peeling strength of the welded joint of two wires with a wire core diameter of 0.25 mm reaches 306.8 N. Examining the welding temperature and assessing the joint's porosity reveals a significant impact of temperature on porosity. However, relying solely on porosity as a criterion for judging the overall forming quality of joints may be insufficient. Scanning electron microscope and energy-dispersive X-ray elemental analysis revealed that certain wires underwent plastic deformation at elevated temperatures without attaining atomic bonding. Additionally, the welded joint exhibits a compact structure externally and a more relaxed structure internally. The upper side of the joint in contact with the briquette and the lower side in contact with the welding head exhibit minimal gaps, while numerous gaps are evident in the middle of the joint. Furthermore, upon examining the fracture morphology, two distinct failure modes are identified at the joint surface of the conductor. The first involves the fracture of the wire core with a completely separated joint surface, resulting in poor mechanical properties of the joint. The second mode entails the ductile fracture of the wire core at the joint surface, indicating good mechanical properties of the joint.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"41 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241262863","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigates ultrasonic metal welding to manufacture 10 mm2 copper (Cu) wire joints with different core diameters. The primary purpose of this study is to explore the influence of wire core diameter on the performance of ultrasonic welded joints. Wire core diameter is positively correlated with the peeling resistance of the joint. Superior mechanical properties of the joint are achieved with an increased diameter of the wire core. The peeling strength of the welded joint of two wires with a wire core diameter of 0.25 mm reaches 306.8 N. Examining the welding temperature and assessing the joint's porosity reveals a significant impact of temperature on porosity. However, relying solely on porosity as a criterion for judging the overall forming quality of joints may be insufficient. Scanning electron microscope and energy-dispersive X-ray elemental analysis revealed that certain wires underwent plastic deformation at elevated temperatures without attaining atomic bonding. Additionally, the welded joint exhibits a compact structure externally and a more relaxed structure internally. The upper side of the joint in contact with the briquette and the lower side in contact with the welding head exhibit minimal gaps, while numerous gaps are evident in the middle of the joint. Furthermore, upon examining the fracture morphology, two distinct failure modes are identified at the joint surface of the conductor. The first involves the fracture of the wire core with a completely separated joint surface, resulting in poor mechanical properties of the joint. The second mode entails the ductile fracture of the wire core at the joint surface, indicating good mechanical properties of the joint.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).