{"title":"Exploring the influence of fiber orientation on the mechanical characteristics of polymer composites reinforced with banana and corn fibers","authors":"Shubham Kumar, Anant Prakash Agrawal, Shahazad Ali, Ankit Manral","doi":"10.1177/14644207241260662","DOIUrl":null,"url":null,"abstract":"In recent decades, the utilization of polymer composites reinforced with natural fibers has seen a significant increase due to their durability, eco-friendliness, and favorable composite properties. This study investigates the influence of unidirectional and cross-directional fiber orientation on the mechanical properties of polymer composites reinforced with banana and corn fibers, fabricated through a hand-lay-up process. The research assesses the impact of fiber orientation on various mechanical properties, including density, porosity, tensile strength, flexural strength, and impact strength. The findings reveal that the higher densities of banana and corn fibers, in comparison to the epoxy matrix, contribute to increased overall weight density in the composites, with cross-directional fiber orientation leading to higher porosity. Moreover, cross-directional reinforcement orientation enhances tensile strength, resulting in a robust bond with the matrix. Composites with cross-directional corn fibers exhibit the highest ultimate tensile strength of 49.57 MPa, marking a significant improvement over other fiber configurations. Notably, unidirectional corn fibers outperform in flexural strength of 14.07 MPa, surpassing banana–corn, and banana–banana configurations by 268.32% and 32.73%, respectively, and cross-directional banana–corn hybrid composites exhibit superior impact strength measuring 5.31 kJ/m<jats:sup>2</jats:sup> due to their ability to resist crack propagation. Whereas scanning electron microscopy micrographs of fractured samples reveal debonding, fiber pullout, and fiber scissoring as the root causes of sample failure under tensile load These insights provide valuable guidance for the design and application of composite materials.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241260662","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, the utilization of polymer composites reinforced with natural fibers has seen a significant increase due to their durability, eco-friendliness, and favorable composite properties. This study investigates the influence of unidirectional and cross-directional fiber orientation on the mechanical properties of polymer composites reinforced with banana and corn fibers, fabricated through a hand-lay-up process. The research assesses the impact of fiber orientation on various mechanical properties, including density, porosity, tensile strength, flexural strength, and impact strength. The findings reveal that the higher densities of banana and corn fibers, in comparison to the epoxy matrix, contribute to increased overall weight density in the composites, with cross-directional fiber orientation leading to higher porosity. Moreover, cross-directional reinforcement orientation enhances tensile strength, resulting in a robust bond with the matrix. Composites with cross-directional corn fibers exhibit the highest ultimate tensile strength of 49.57 MPa, marking a significant improvement over other fiber configurations. Notably, unidirectional corn fibers outperform in flexural strength of 14.07 MPa, surpassing banana–corn, and banana–banana configurations by 268.32% and 32.73%, respectively, and cross-directional banana–corn hybrid composites exhibit superior impact strength measuring 5.31 kJ/m2 due to their ability to resist crack propagation. Whereas scanning electron microscopy micrographs of fractured samples reveal debonding, fiber pullout, and fiber scissoring as the root causes of sample failure under tensile load These insights provide valuable guidance for the design and application of composite materials.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).