Assessment of Hull and Propeller Performance Degradation Based on TSO-GA-LSTM

IF 2.7 3区 地球科学 Q1 ENGINEERING, MARINE Journal of Marine Science and Engineering Pub Date : 2024-07-26 DOI:10.3390/jmse12081263
Guolei Huang, Yifan Liu, Jianjian Xin, Tiantian Bao
{"title":"Assessment of Hull and Propeller Performance Degradation Based on TSO-GA-LSTM","authors":"Guolei Huang, Yifan Liu, Jianjian Xin, Tiantian Bao","doi":"10.3390/jmse12081263","DOIUrl":null,"url":null,"abstract":"Evaluating the degradation of hull and ship performance and exploring their degradation pathways is crucial for developing scientific and reasonable ship maintenance plans. This paper proposes a two-stage optimization (TSO) algorithm that combines the Genetic Algorithm (GA) and Long Short-Term Memory (LSTM) network, capable of simultaneously optimizing input features and model parameters to enhance the accuracy and generalization ability of speed prediction models. Additionally, a performance degradation assessment method based on speed loss is provided, aimed at evaluating the degradation of hull and propeller performance, as well as extracting the performance degradation paths. The results indicated that the proposed TSO-LSTM-GA algorithm significantly outperformed existing baseline models. Furthermore, the provided performance degradation assessment method demonstrated certain effectiveness on the target ship data, with a measured degradation rate of 0.00344 kn/d and a performance degradation of 9.569% over 478 days, corresponding to an annual speed loss of 1.257 kn.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12081263","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating the degradation of hull and ship performance and exploring their degradation pathways is crucial for developing scientific and reasonable ship maintenance plans. This paper proposes a two-stage optimization (TSO) algorithm that combines the Genetic Algorithm (GA) and Long Short-Term Memory (LSTM) network, capable of simultaneously optimizing input features and model parameters to enhance the accuracy and generalization ability of speed prediction models. Additionally, a performance degradation assessment method based on speed loss is provided, aimed at evaluating the degradation of hull and propeller performance, as well as extracting the performance degradation paths. The results indicated that the proposed TSO-LSTM-GA algorithm significantly outperformed existing baseline models. Furthermore, the provided performance degradation assessment method demonstrated certain effectiveness on the target ship data, with a measured degradation rate of 0.00344 kn/d and a performance degradation of 9.569% over 478 days, corresponding to an annual speed loss of 1.257 kn.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 TSO-GA-LSTM 的船体和螺旋桨性能退化评估
评估船体和船舶的性能退化并探索其退化途径对于制定科学合理的船舶维护计划至关重要。本文提出了一种结合遗传算法(GA)和长短期记忆(LSTM)网络的两阶段优化(TSO)算法,能够同时优化输入特征和模型参数,提高航速预测模型的精度和泛化能力。此外,还提供了一种基于速度损失的性能退化评估方法,旨在评估船体和螺旋桨的性能退化,并提取性能退化路径。结果表明,所提出的 TSO-LSTM-GA 算法明显优于现有的基线模型。此外,所提供的性能退化评估方法在目标船舶数据上表现出了一定的有效性,测得的退化率为 0.00344 kn/d,478 天的性能退化率为 9.569%,对应的年航速损失为 1.257 kn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Marine Science and Engineering
Journal of Marine Science and Engineering Engineering-Ocean Engineering
CiteScore
4.40
自引率
20.70%
发文量
1640
审稿时长
18.09 days
期刊介绍: Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Study on the Turning Characteristics and Influencing Factors of the Unmanned Sailboat Ship Trajectory Planning and Optimization via Ensemble Hybrid A* and Multi-Target Point Artificial Potential Field Model The Volcanic Rocks and Hydrocarbon Accumulation in the Offshore Indus Basin, Pakistan Opportunity-Maintenance-Based Scheduling Optimization for Ship-Loading Operation Systems in Coal Export Terminals FPID-RCP: A Control Method for a Swing-Type Wave Compensation Platform System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1