Optimization of energy storage and electrocaloric performance in Pb(Zr,Ti)O3 via A-Site La and Bi Co-doping

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION Smart Materials and Structures Pub Date : 2024-07-24 DOI:10.1088/1361-665x/ad5d33
Manoj Kumar, Keshav Malhotra, Nishu, Rajat Syal, Shailendra Gupta, Gyaneshwar Sharma, Arun Kumar Singh and Sanjeev Kumar
{"title":"Optimization of energy storage and electrocaloric performance in Pb(Zr,Ti)O3 via A-Site La and Bi Co-doping","authors":"Manoj Kumar, Keshav Malhotra, Nishu, Rajat Syal, Shailendra Gupta, Gyaneshwar Sharma, Arun Kumar Singh and Sanjeev Kumar","doi":"10.1088/1361-665x/ad5d33","DOIUrl":null,"url":null,"abstract":"Lead-based ferroelectrics are one of the most fascinating candidates in the field of state-of-the-art electronic technology. Their intriguing properties are further enriched via the realization of morphotropic phase boundaries. Moreover, the A-site chemical substitution provides insight into the emergence of various exotic phases. Here, we employ co-doping of La3+ and Bi3+ at the A-site of Pb(Zr,Ti)O3 (PZT) ferroelectric to broaden the practical perspective of relaxor systems. Here, we emphasize that the A-site co-doping approach introduces technologically appealing amendments in the well-established temperature composition phase diagram of the PZT system. La3+ and Bi3+ doping favors the evolution of a novel response to thermal and field fluctuations. The maximum values of are found to be ∼0.157, 0.118 and 0.176 J (kg·K)−1 for and , respectively. We employ the electrocaloric characteristics and Arrott plot as probing tools. The observation of a negative electrocaloric effect and the systematic reversal of Arrott lines, followed by a poling effect on the dielectric constant, reveals the emergence of ergodic phase as a novel phase. This further reveals that the Bi doping approach leads to the emergence of exotic characteristics in the chemically modified PZT system. The maximum observed recoverable energy for the composition for x = 0.01 is 0.0479 J cm−3 at a temperature of 388 K.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"45 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad5d33","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Lead-based ferroelectrics are one of the most fascinating candidates in the field of state-of-the-art electronic technology. Their intriguing properties are further enriched via the realization of morphotropic phase boundaries. Moreover, the A-site chemical substitution provides insight into the emergence of various exotic phases. Here, we employ co-doping of La3+ and Bi3+ at the A-site of Pb(Zr,Ti)O3 (PZT) ferroelectric to broaden the practical perspective of relaxor systems. Here, we emphasize that the A-site co-doping approach introduces technologically appealing amendments in the well-established temperature composition phase diagram of the PZT system. La3+ and Bi3+ doping favors the evolution of a novel response to thermal and field fluctuations. The maximum values of are found to be ∼0.157, 0.118 and 0.176 J (kg·K)−1 for and , respectively. We employ the electrocaloric characteristics and Arrott plot as probing tools. The observation of a negative electrocaloric effect and the systematic reversal of Arrott lines, followed by a poling effect on the dielectric constant, reveals the emergence of ergodic phase as a novel phase. This further reveals that the Bi doping approach leads to the emergence of exotic characteristics in the chemically modified PZT system. The maximum observed recoverable energy for the composition for x = 0.01 is 0.0479 J cm−3 at a temperature of 388 K.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂 A-Site La 和 Bi,优化 Pb(Zr,Ti)O3 的储能和电热性能
铅基铁电体是最先进电子技术领域最令人着迷的候选材料之一。通过实现形态各向异性相界,它们引人入胜的特性得到了进一步丰富。此外,A-位化学置换还为各种奇异相的出现提供了启示。在这里,我们采用在 Pb(Zr,Ti)O3(PZT)铁电体的 A 位共同掺杂 La3+ 和 Bi3+ 的方法来拓宽弛豫器系统的实用前景。在此,我们强调 A 位共掺方法在 PZT 系统既定的温度成分相图中引入了具有技术吸引力的修正。La3+ 和 Bi3+ 的掺杂有利于对热波动和场波动产生新的响应。我们发现,对于 和 ,其最大值分别为 ∼0.157、0.118 和 0.176 J (kg-K)-1。我们采用电致发热特性和阿罗特曲线图作为探测工具。通过观察负电蚀效应和阿罗特线的系统性反转,以及介电常数的极化效应,我们发现了作为一种新相的麦哲伦相的出现。这进一步表明,掺杂铋的方法导致化学修饰 PZT 系统出现了奇特的特性。在 388 K 的温度下,对 x = 0.01 的成分观察到的最大可恢复能量为 0.0479 J cm-3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
期刊最新文献
Nonlinear vibration of a loaded string in energy harvesting Three-dimensional free-standing heterostructures out of MoS2 and rGO with infused PDMS towards electromechanical pressure sensing An IGBT coupling structure with a smart service life reliability predictor using active learning Shape optimization of a non-uniform piezoelectric bending beam for human knee energy harvester A frequency steerable electromagnetic acoustic transducer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1