Comparison of global sensitivity analysis methods for a fire spread model with a segmented characteristic

Shi-Shun Chen, Xiao-Yang Li
{"title":"Comparison of global sensitivity analysis methods for a fire spread model with a segmented characteristic","authors":"Shi-Shun Chen, Xiao-Yang Li","doi":"arxiv-2407.17718","DOIUrl":null,"url":null,"abstract":"Global sensitivity analysis (GSA) can provide rich information for\ncontrolling output uncertainty. In practical applications, segmented models are\ncommonly used to describe an abrupt model change. For segmented models, the\ncomplicated uncertainty propagation during the transition region may lead to\ndifferent importance rankings of different GSA methods. If an unsuitable GSA\nmethod is applied, misleading results will be obtained, resulting in suboptimal\nor even wrong decisions. In this paper, four GSA indices, i.e., Sobol index,\nmutual information, delta index and PAWN index, are applied for a segmented\nfire spread model (Dry Eucalypt). The results show that four GSA indices give\ndifferent importance rankings during the transition region since segmented\ncharacteristics affect different GSA indices in different ways. We suggest that\nanalysts should rely on the results of different GSA indices according to their\npractical purpose, especially when making decisions for segmented models during\nthe transition region.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global sensitivity analysis (GSA) can provide rich information for controlling output uncertainty. In practical applications, segmented models are commonly used to describe an abrupt model change. For segmented models, the complicated uncertainty propagation during the transition region may lead to different importance rankings of different GSA methods. If an unsuitable GSA method is applied, misleading results will be obtained, resulting in suboptimal or even wrong decisions. In this paper, four GSA indices, i.e., Sobol index, mutual information, delta index and PAWN index, are applied for a segmented fire spread model (Dry Eucalypt). The results show that four GSA indices give different importance rankings during the transition region since segmented characteristics affect different GSA indices in different ways. We suggest that analysts should rely on the results of different GSA indices according to their practical purpose, especially when making decisions for segmented models during the transition region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有分段特征的火灾蔓延模型的全局敏感性分析方法比较
全局敏感性分析(GSA)可以为控制输出的不确定性提供丰富的信息。在实际应用中,分段模型仅用于描述模型的突然变化。对于分段模型,过渡区域内复杂的不确定性传播可能会导致不同 GSA 方法的重要性排序不同。如果采用了不合适的 GSA 方法,就会得到误导性的结果,导致次优甚至错误的决策。本文将四种 GSA 指数,即 Sobol 指数、互信息指数、delta 指数和 PAWN 指数,应用于分段火灾蔓延模型(干桉树)。结果表明,由于分段特征以不同方式影响不同的 GSA 指数,因此四种 GSA 指数在过渡区域的重要性排名不同。我们建议,分析人员应根据其实际目的依赖于不同 GSA 指数的结果,尤其是在过渡区域对分段模型进行决策时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1