Optimal Visual Search with Highly Heuristic Decision Rules

Anqi Zhang, Wilson S. Geisler
{"title":"Optimal Visual Search with Highly Heuristic Decision Rules","authors":"Anqi Zhang, Wilson S. Geisler","doi":"arxiv-2409.12124","DOIUrl":null,"url":null,"abstract":"Visual search is a fundamental natural task for humans and other animals. We\ninvestigated the decision processes humans use when searching briefly presented\ndisplays having well-separated potential target-object locations. Performance\nwas compared with the Bayesian-optimal decision process under the assumption\nthat the information from the different potential target locations is\nstatistically independent. Surprisingly, humans performed slightly better than\noptimal, despite humans' substantial loss of sensitivity in the fovea, and the\nimplausibility of the human brain replicating the optimal computations. We show\nthat three factors can quantitatively explain these seemingly paradoxical\nresults. Most importantly, simple and fixed heuristic decision rules reach near\noptimal search performance. Secondly, foveal neglect primarily affects only the\ncentral potential target location. Finally, spatially correlated neural noise\ncauses search performance to exceed that predicted for independent noise. These\nfindings have far-reaching implications for understanding visual search tasks\nand other identification tasks in humans and other animals.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual search is a fundamental natural task for humans and other animals. We investigated the decision processes humans use when searching briefly presented displays having well-separated potential target-object locations. Performance was compared with the Bayesian-optimal decision process under the assumption that the information from the different potential target locations is statistically independent. Surprisingly, humans performed slightly better than optimal, despite humans' substantial loss of sensitivity in the fovea, and the implausibility of the human brain replicating the optimal computations. We show that three factors can quantitatively explain these seemingly paradoxical results. Most importantly, simple and fixed heuristic decision rules reach near optimal search performance. Secondly, foveal neglect primarily affects only the central potential target location. Finally, spatially correlated neural noise causes search performance to exceed that predicted for independent noise. These findings have far-reaching implications for understanding visual search tasks and other identification tasks in humans and other animals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用高度启发式决策规则的最佳视觉搜索
视觉搜索是人类和其他动物的一项基本自然任务。我们研究了人类在搜索简短呈现的、潜在目标-对象位置完全分离的显示屏时所使用的决策过程。我们将人类的表现与贝叶斯最优决策过程进行了比较,贝叶斯最优决策过程的假设是:来自不同潜在目标位置的信息在统计学上是独立的。令人惊讶的是,尽管人类在眼窝处的灵敏度大幅下降,而且人脑复制最优计算的可能性很小,但人类的表现却略高于最优结果。我们的研究表明,有三个因素可以定量解释这些看似矛盾的结果。最重要的是,简单而固定的启发式决策规则可以达到接近最优的搜索性能。其次,眼窝忽视主要只影响中央潜在目标位置。最后,空间相关神经噪声导致搜索性能超过了独立噪声的预测值。这些发现对理解人类和其他动物的视觉搜索任务和其他识别任务具有深远影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1