Anti-windup design for supercavitating vehicle based on sliding mode control combined with RBF network

IF 2.1 4区 工程技术 Advances in Mechanical Engineering Pub Date : 2024-07-24 DOI:10.1177/16878132241265830
Xinhua Zhao, Shangze Chen, Kang Wang
{"title":"Anti-windup design for supercavitating vehicle based on sliding mode control combined with RBF network","authors":"Xinhua Zhao, Shangze Chen, Kang Wang","doi":"10.1177/16878132241265830","DOIUrl":null,"url":null,"abstract":"During the longitudinal motion of a supercavitating vehicle, the stability control problem is complicated because of the nonlinear planing force on the tail part. The dynamic model of a supercavitating vehicle in longitude plane is nonlinear, simultaneously, the control instructions of a supercavitating vehicle may exceed the physical limits of an actuator. Therefore, designing a longitudinal stability control system for a supercavitating vehicle, not only the treatment of nonlinear planing force, but also the physical constraints of the actuator should be considered. For the longitudinal motion model of supercavitating vehicle, a cascade model is proposed, which decomposes the longitudinal motion of supercavitating vehicle into two subsystems. Sliding mode control based on RBF neural network compensation is adopted in the controller design process, and RBF neural network is exploited to approach the deviation caused by actuator saturation. The proposed control method can effectively compensate the performance degradation caused by control variable saturation, and has strong robustness.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"82 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241265830","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During the longitudinal motion of a supercavitating vehicle, the stability control problem is complicated because of the nonlinear planing force on the tail part. The dynamic model of a supercavitating vehicle in longitude plane is nonlinear, simultaneously, the control instructions of a supercavitating vehicle may exceed the physical limits of an actuator. Therefore, designing a longitudinal stability control system for a supercavitating vehicle, not only the treatment of nonlinear planing force, but also the physical constraints of the actuator should be considered. For the longitudinal motion model of supercavitating vehicle, a cascade model is proposed, which decomposes the longitudinal motion of supercavitating vehicle into two subsystems. Sliding mode control based on RBF neural network compensation is adopted in the controller design process, and RBF neural network is exploited to approach the deviation caused by actuator saturation. The proposed control method can effectively compensate the performance degradation caused by control variable saturation, and has strong robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于滑模控制和 RBF 网络的超级气垫船防风设计
在超级飞行器的纵向运动过程中,由于尾部受到非线性刨削力的作用,其稳定性控制问题比较复杂。超级气浮飞行器在纵向平面上的动态模型是非线性的,同时,超级气浮飞行器的控制指令可能会超出执行器的物理极限。因此,在设计超空速飞行器纵向稳定控制系统时,不仅要考虑非线性平面力的处理,还要考虑执行器的物理限制。针对超空速飞行器的纵向运动模型,提出了一种级联模型,将超空速飞行器的纵向运动分解为两个子系统。在控制器设计过程中采用了基于 RBF 神经网络补偿的滑模控制,并利用 RBF 神经网络来接近执行器饱和引起的偏差。所提出的控制方法能有效补偿控制变量饱和引起的性能下降,并具有很强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering Engineering-Mechanical Engineering
自引率
4.80%
发文量
353
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
期刊最新文献
Influence of urea solution condition on NOx reduction in marine diesel engines Characteristics of deploying longitudinal folding wings with compound actuation Research on the service life of bearings in the gearbox of rolling mill transmission system under non-steady lubrication state Research and application of a coupled wheel-track off-road robot based on separate track structure Research on energy consumption evaluation and energy-saving design of cranes in service based on structure-mechanism coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1