Albena Yoleva, Tina Tasheva, Stoyan Djambazov, Adriana Batsova
{"title":"Development of multicomponent glasses for application as a glazing layer on dental zirconia","authors":"Albena Yoleva, Tina Tasheva, Stoyan Djambazov, Adriana Batsova","doi":"10.1111/ijag.16684","DOIUrl":null,"url":null,"abstract":"This study presents the development of multicomponent glasses for glaze layers for dental yttria‐stabilized tetragonal zirconia (Y‐TZP). The samples were melted in the temperature range of 1 250–1 400°C and were cast in water to obtain a frit. The frits were grounded to a powder with a particle size of less than 40 µm. To study the crystallization tendency of melted glasses, they were thermally treated at 800°C and X‐ray diffraction analyses were performed for both types of samples. The structure of the glasses was investigated by the Fourier‐transform infrared spectroscopy. The thermal expansion coefficient, CTE, the glass‐transition temperature, <jats:italic>T</jats:italic><jats:sub>g</jats:sub>, and the softening temperature, <jats:italic>T</jats:italic><jats:sub>s</jats:sub>, were defined. To test the glaze layer on zirconia ceramic, glass powders with different compositions were mixed with modeling fluid and applied on zirconia specimens and then fired at 800°C in a vacuum dental furnace. Scanning electron microscopy, SEM, was used to observe a cross‐section of the glass–ceramic contact on a glazed zirconia ceramic specimen. Glass with the highest content of alkaline oxides is characterized by the closest CTE to zirconium ceramics (10.10<jats:sup>−6</jats:sup> K<jats:sup>−1</jats:sup>), the greatest transparency and good fluidity, and shows good adhesion to the zirconia. The glaze layer is homogeneous without cracks, pores, and crystals.","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"44 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijag.16684","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the development of multicomponent glasses for glaze layers for dental yttria‐stabilized tetragonal zirconia (Y‐TZP). The samples were melted in the temperature range of 1 250–1 400°C and were cast in water to obtain a frit. The frits were grounded to a powder with a particle size of less than 40 µm. To study the crystallization tendency of melted glasses, they were thermally treated at 800°C and X‐ray diffraction analyses were performed for both types of samples. The structure of the glasses was investigated by the Fourier‐transform infrared spectroscopy. The thermal expansion coefficient, CTE, the glass‐transition temperature, Tg, and the softening temperature, Ts, were defined. To test the glaze layer on zirconia ceramic, glass powders with different compositions were mixed with modeling fluid and applied on zirconia specimens and then fired at 800°C in a vacuum dental furnace. Scanning electron microscopy, SEM, was used to observe a cross‐section of the glass–ceramic contact on a glazed zirconia ceramic specimen. Glass with the highest content of alkaline oxides is characterized by the closest CTE to zirconium ceramics (10.10−6 K−1), the greatest transparency and good fluidity, and shows good adhesion to the zirconia. The glaze layer is homogeneous without cracks, pores, and crystals.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.