Maider Zarrabeitia, Iñigo Salazar, Begoña Acebedo, Miguel Ángel Muñoz-Márquez
{"title":"Stabilization of P2 layered oxide electrodes in sodium-ion batteries through sodium evaporation","authors":"Maider Zarrabeitia, Iñigo Salazar, Begoña Acebedo, Miguel Ángel Muñoz-Márquez","doi":"10.1038/s43246-024-00569-2","DOIUrl":null,"url":null,"abstract":"Sodium-ion batteries are well positioned to become, in the near future, the energy storage system for stationary applications and light electromobility. However, two main drawbacks feed their underperformance, namely the irreversible sodium consumption during solid electrolyte interphase formation and the low sodiation degree of one of the most promising cathode materials: the P2-type layered oxides. Here, we show a scalable and low-cost sodiation process based on sodium thermal evaporation. This method tackles the poor sodiation degree of P2-type sodium layered oxides, thus overcoming the first irreversible capacity as demonstrated by manufacturing and testing all solid-state Na doped-Na~1Mn0.8Fe0.1Ti0.1O2 ǀǀ PEO-based polymer electrolyte ǀǀ Na full cells. The proposed sodium physical vapor deposition method opens the door for an easily scalable and low-cost strategy to incorporate any metal deficiency in the battery materials, further pushing the battery development. The energy density of sodium-ion batteries is lacking due to the low sodiation degree of promising layered cathode materials. Here, sodium thermal evaporation tackles the poor sodiation degree of P2-type sodium layered oxides, overcoming the first irreversible capacity in all solid-state full cells.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00569-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00569-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium-ion batteries are well positioned to become, in the near future, the energy storage system for stationary applications and light electromobility. However, two main drawbacks feed their underperformance, namely the irreversible sodium consumption during solid electrolyte interphase formation and the low sodiation degree of one of the most promising cathode materials: the P2-type layered oxides. Here, we show a scalable and low-cost sodiation process based on sodium thermal evaporation. This method tackles the poor sodiation degree of P2-type sodium layered oxides, thus overcoming the first irreversible capacity as demonstrated by manufacturing and testing all solid-state Na doped-Na~1Mn0.8Fe0.1Ti0.1O2 ǀǀ PEO-based polymer electrolyte ǀǀ Na full cells. The proposed sodium physical vapor deposition method opens the door for an easily scalable and low-cost strategy to incorporate any metal deficiency in the battery materials, further pushing the battery development. The energy density of sodium-ion batteries is lacking due to the low sodiation degree of promising layered cathode materials. Here, sodium thermal evaporation tackles the poor sodiation degree of P2-type sodium layered oxides, overcoming the first irreversible capacity in all solid-state full cells.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.