Muhammad Yousaf, Yuzheng Lu, Muhammad Akbar, Lei Lei, Shao Jing, Youkun Tao
{"title":"Advances in solid oxide fuel cell technologies: lowering the operating temperatures through material innovations","authors":"Muhammad Yousaf, Yuzheng Lu, Muhammad Akbar, Lei Lei, Shao Jing, Youkun Tao","doi":"10.1016/j.mtener.2024.101633","DOIUrl":null,"url":null,"abstract":"Solid oxide fuel cells (SOFCs) are promising for clean energy generation due to their high efficiency, fuel flexibility, and status as a clean energy source with no environmental hazards. However, the challenge of operating these SOFCs at elevated temperatures (800–1000 °C) presents significant hurdles regarding material selection, cost-effectiveness, and device fabrication. Lowering the operational temperature of SOFCs can enhance performance and economic viability. Nevertheless, this pursuit introduces challenges in the form of increased ohmic and polarization resistances, which detrimentally affect electrochemical performance. High ohmic resistance and activation energy at lower temperatures reduce ionic conductivity and impede SOFC device efficiency. Recent advancements in materials and cutting-edge technologies have addressed these issues, particularly in low-temperature operations for SOFC devices. This review article focuses on the latest developments in material selection and advanced technologies that have demonstrated notable improvements in power output and long-term durability at lower operating temperatures, highlighting the significance of high-performing electrolyte and electrode materials with enhanced electrochemical and fast electrocatalytic functionality to improve cell efficiency. Additionally, the article explores the significant obstacles encountered by SOFCs at low operating temperatures.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101633","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solid oxide fuel cells (SOFCs) are promising for clean energy generation due to their high efficiency, fuel flexibility, and status as a clean energy source with no environmental hazards. However, the challenge of operating these SOFCs at elevated temperatures (800–1000 °C) presents significant hurdles regarding material selection, cost-effectiveness, and device fabrication. Lowering the operational temperature of SOFCs can enhance performance and economic viability. Nevertheless, this pursuit introduces challenges in the form of increased ohmic and polarization resistances, which detrimentally affect electrochemical performance. High ohmic resistance and activation energy at lower temperatures reduce ionic conductivity and impede SOFC device efficiency. Recent advancements in materials and cutting-edge technologies have addressed these issues, particularly in low-temperature operations for SOFC devices. This review article focuses on the latest developments in material selection and advanced technologies that have demonstrated notable improvements in power output and long-term durability at lower operating temperatures, highlighting the significance of high-performing electrolyte and electrode materials with enhanced electrochemical and fast electrocatalytic functionality to improve cell efficiency. Additionally, the article explores the significant obstacles encountered by SOFCs at low operating temperatures.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials