{"title":"Mechanistic Insights into Curvature Formation in Synthetic Vesicles.","authors":"Alexander B Cook","doi":"10.1002/anie.202408568","DOIUrl":null,"url":null,"abstract":"<p><p>The mimicking of natural lipid bilayers with synthetic amphiphilic systems is of great interest to researchers, as insights could lead to better understanding of the complexities of cell membranes, as well as new materials and healthcare technologies. Recapitulating natural lipid asymmetry across bilayer membranes has important implications for curvature in cell, vesicle, and organelle morphologies, but has been challenging to achieve with synthetic lipid combinations or standard amphiphilic block copolymers. In a recent article, Elizebath et al. report the synthesis of a new type of synthetic amphiphile able to induce asymmetry in an artificial bilayer membrane dynamically. The molecules were designed around an extended π-conjugated hydrophobic core with tertiary amine-terminated oxyalkylene side chains. Protonation of the tertiary amines on the bilayer exterior leads to curvature induction, bilayer fission, and vesicle formation as monitored by time-resolved spectroscopy techniques and microscopy. The results were further validated with density functional theory (DFT) calculations. The delicate balance between different molecular scale interactions in the supramolecular structures led to the dynamic transformation of the bilayer membranes. Insights described could be used to advance the assembly of hierarchical life-like materials.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/anie.202408568","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The mimicking of natural lipid bilayers with synthetic amphiphilic systems is of great interest to researchers, as insights could lead to better understanding of the complexities of cell membranes, as well as new materials and healthcare technologies. Recapitulating natural lipid asymmetry across bilayer membranes has important implications for curvature in cell, vesicle, and organelle morphologies, but has been challenging to achieve with synthetic lipid combinations or standard amphiphilic block copolymers. In a recent article, Elizebath et al. report the synthesis of a new type of synthetic amphiphile able to induce asymmetry in an artificial bilayer membrane dynamically. The molecules were designed around an extended π-conjugated hydrophobic core with tertiary amine-terminated oxyalkylene side chains. Protonation of the tertiary amines on the bilayer exterior leads to curvature induction, bilayer fission, and vesicle formation as monitored by time-resolved spectroscopy techniques and microscopy. The results were further validated with density functional theory (DFT) calculations. The delicate balance between different molecular scale interactions in the supramolecular structures led to the dynamic transformation of the bilayer membranes. Insights described could be used to advance the assembly of hierarchical life-like materials.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.