Mechanistic Insights into Curvature Formation in Synthetic Vesicles.

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-11-25 Epub Date: 2024-10-08 DOI:10.1002/anie.202408568
Alexander B Cook
{"title":"Mechanistic Insights into Curvature Formation in Synthetic Vesicles.","authors":"Alexander B Cook","doi":"10.1002/anie.202408568","DOIUrl":null,"url":null,"abstract":"<p><p>The mimicking of natural lipid bilayers with synthetic amphiphilic systems is of great interest to researchers, as insights could lead to better understanding of the complexities of cell membranes, as well as new materials and healthcare technologies. Recapitulating natural lipid asymmetry across bilayer membranes has important implications for curvature in cell, vesicle, and organelle morphologies, but has been challenging to achieve with synthetic lipid combinations or standard amphiphilic block copolymers. In a recent article, Elizebath et al. report the synthesis of a new type of synthetic amphiphile able to induce asymmetry in an artificial bilayer membrane dynamically. The molecules were designed around an extended π-conjugated hydrophobic core with tertiary amine-terminated oxyalkylene side chains. Protonation of the tertiary amines on the bilayer exterior leads to curvature induction, bilayer fission, and vesicle formation as monitored by time-resolved spectroscopy techniques and microscopy. The results were further validated with density functional theory (DFT) calculations. The delicate balance between different molecular scale interactions in the supramolecular structures led to the dynamic transformation of the bilayer membranes. Insights described could be used to advance the assembly of hierarchical life-like materials.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/anie.202408568","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The mimicking of natural lipid bilayers with synthetic amphiphilic systems is of great interest to researchers, as insights could lead to better understanding of the complexities of cell membranes, as well as new materials and healthcare technologies. Recapitulating natural lipid asymmetry across bilayer membranes has important implications for curvature in cell, vesicle, and organelle morphologies, but has been challenging to achieve with synthetic lipid combinations or standard amphiphilic block copolymers. In a recent article, Elizebath et al. report the synthesis of a new type of synthetic amphiphile able to induce asymmetry in an artificial bilayer membrane dynamically. The molecules were designed around an extended π-conjugated hydrophobic core with tertiary amine-terminated oxyalkylene side chains. Protonation of the tertiary amines on the bilayer exterior leads to curvature induction, bilayer fission, and vesicle formation as monitored by time-resolved spectroscopy techniques and microscopy. The results were further validated with density functional theory (DFT) calculations. The delicate balance between different molecular scale interactions in the supramolecular structures led to the dynamic transformation of the bilayer membranes. Insights described could be used to advance the assembly of hierarchical life-like materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成囊泡中曲率形成的机理透视。
研究人员对用合成双亲系统模拟天然脂质双层膜非常感兴趣,因为这种见解可以帮助他们更好地理解细胞膜的复杂性,并开发出新的材料和医疗保健技术。在双层膜上重现天然脂质的不对称性对细胞、囊泡和细胞器形态的弯曲具有重要影响,但合成脂质组合或标准两亲嵌段共聚物却很难实现这一点。在最近的一篇文章中,Elizebath 等人报告了一种新型合成双亲化合物的合成,这种化合物能够动态地诱导人工双层膜的不对称。这些分子的设计围绕着一个具有叔胺末端氧亚烷基侧链的扩展π-共轭疏水核心。通过时间分辨光谱技术和显微镜监测,双分子层外部叔胺的质子化会导致曲率诱导、双分子层破裂和囊泡形成。密度泛函理论(DFT)计算进一步验证了这些结果。超分子结构中不同分子尺度相互作用之间的微妙平衡导致了双层膜的动态变化。所描述的见解可用于推进层状生命材料的组装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Simultaneously Strengthening and Toughening All-Natural Structural Materials via 3D Nanofiber Network Interfacial Design. Living Hybrid Exciton Materials: Enhanced Fluorescence and Chiroptical Properties in Living Supramolecular Polymers with Strong Frenkel/Charge-Transfer Exciton Coupling. Enhanced Charge-Carrier Dynamics and Efficient Photoelectrochemical Nitrate-to-Ammonia Conversion on Antimony Sulfide-Based Photocathodes. Mechanistic Insights into Curvature Formation in Synthetic Vesicles. The Fate of the Formic Acid Proton on the Anatase TiO2(101) Surface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1