{"title":"The Fate of the Formic Acid Proton on the Anatase TiO<sub>2</sub>(101) Surface.","authors":"Erika Fallacara, Fabio Finocchi, Marco Cazzaniga, Stéphane Chenot, Slavica Stankic, Michele Ceotto","doi":"10.1002/anie.202409523","DOIUrl":null,"url":null,"abstract":"<p><p>As a prototype adsorption reaction of gas Brønsted acid on oxides, we study the adsorption of formic acid on anatase. We perform infrared spectroscopy measurements of adsorbed HCOOH and HCOOD on TiO<sub>2</sub> nanopowders, from 13 K up to room temperature in an ultra-high vacuum chamber. We assign the IR signals via computed spectra from nuclear quantum dynamics simulations using our divide-and-conquer semiclassical ab initio molecular dynamics method. The acid proton forms an extraordinarily short and strong hydrogen bond with the surface oxygen. The strength of this hydrogen bond, that compares to H bonds in ice at high pressures, is at the root of a substantial redshift with respect to the typical free OH stretching frequency, which eludes its straightforward detection.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/anie.202409523","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As a prototype adsorption reaction of gas Brønsted acid on oxides, we study the adsorption of formic acid on anatase. We perform infrared spectroscopy measurements of adsorbed HCOOH and HCOOD on TiO2 nanopowders, from 13 K up to room temperature in an ultra-high vacuum chamber. We assign the IR signals via computed spectra from nuclear quantum dynamics simulations using our divide-and-conquer semiclassical ab initio molecular dynamics method. The acid proton forms an extraordinarily short and strong hydrogen bond with the surface oxygen. The strength of this hydrogen bond, that compares to H bonds in ice at high pressures, is at the root of a substantial redshift with respect to the typical free OH stretching frequency, which eludes its straightforward detection.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.