You Zhang, Yi-Wen Tang, Yu-Ting Peng, Zi Yan, Jin Zhou, Zeng-Hui Yue
{"title":"Acupuncture, an effective treatment for post-stroke neurologic dysfunction","authors":"You Zhang, Yi-Wen Tang, Yu-Ting Peng, Zi Yan, Jin Zhou, Zeng-Hui Yue","doi":"10.1016/j.brainresbull.2024.111035","DOIUrl":null,"url":null,"abstract":"<div><p>Stroke episodes represent a significant subset of cerebrovascular diseases globally, often resulting in diverse neurological impairments such as hemiparesis, spasticity, dysphagia, sensory dysfunction, cognitive impairment, depression, aphasia, and other sequelae. These dysfunctions markedly diminish patients' quality of life and impose substantial burdens on their families and society. Consequently, the restoration of neurological function post-stroke remains a primary objective of clinical treatment. Acupuncture, a traditional Chinese medicine technique, is endorsed by the World Health Organization (WHO) for stroke treatment due to its distinct advantages in managing cerebrovascular diseases, including ischemic stroke. Numerous clinical studies have substantiated the efficacy of acupuncture in ameliorating neurological dysfunctions following stroke. This review systematically examines the improvements in post-stroke neurological dysfunction attributable to acupuncture treatment and elucidates potential mechanisms of action proposed in recent years. Additionally, this article aims to present novel therapeutic concepts and strategies for the clinical management of post-stroke neurological dysfunction.</p></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"215 ","pages":"Article 111035"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0361923024001680/pdfft?md5=66f6ced528fdc4fd12e64df7d5abdb53&pid=1-s2.0-S0361923024001680-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024001680","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke episodes represent a significant subset of cerebrovascular diseases globally, often resulting in diverse neurological impairments such as hemiparesis, spasticity, dysphagia, sensory dysfunction, cognitive impairment, depression, aphasia, and other sequelae. These dysfunctions markedly diminish patients' quality of life and impose substantial burdens on their families and society. Consequently, the restoration of neurological function post-stroke remains a primary objective of clinical treatment. Acupuncture, a traditional Chinese medicine technique, is endorsed by the World Health Organization (WHO) for stroke treatment due to its distinct advantages in managing cerebrovascular diseases, including ischemic stroke. Numerous clinical studies have substantiated the efficacy of acupuncture in ameliorating neurological dysfunctions following stroke. This review systematically examines the improvements in post-stroke neurological dysfunction attributable to acupuncture treatment and elucidates potential mechanisms of action proposed in recent years. Additionally, this article aims to present novel therapeutic concepts and strategies for the clinical management of post-stroke neurological dysfunction.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.