Physical Exercise Inhibits Cognitive Impairment and Memory Loss in Aged Mice, and Enhances Pre- and Post-Synaptic Proteins in the Hippocampus of Young and Aged Mice.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-29 DOI:10.1007/s12017-024-08798-x
Ricardo Augusto Leoni De Sousa, Caique Olegário Diniz-Magalhaes, Poliany Pereira Cruz, Gustavo Henrique Bahia de Oliveira, Julia Tereza Aparecida Caldeira Prates, Crisley Mara de Azevedo Ferreira, Rosiane Rosa Silva, Ricardo Cardoso Cassilhas
{"title":"Physical Exercise Inhibits Cognitive Impairment and Memory Loss in Aged Mice, and Enhances Pre- and Post-Synaptic Proteins in the Hippocampus of Young and Aged Mice.","authors":"Ricardo Augusto Leoni De Sousa, Caique Olegário Diniz-Magalhaes, Poliany Pereira Cruz, Gustavo Henrique Bahia de Oliveira, Julia Tereza Aparecida Caldeira Prates, Crisley Mara de Azevedo Ferreira, Rosiane Rosa Silva, Ricardo Cardoso Cassilhas","doi":"10.1007/s12017-024-08798-x","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to evaluate the effects of swimming in the brain and behavior of young and aged mice. Forty-eight male C57BL/6 J mice were randomly distributed into 4 groups (n = 12 per group, 3 and 18 months old). The subdivision of the groups was: 3 months-SED, 18 months-SED, 3 months-EXE, and 18 months-EXE. SED mice did not swim, while EXE mice performed the physical exercise protocol. Training was initiated 48 h after the adaptation week. Swimming sessions consisted of 30 min, with no overload, 5 days per week, for 4 weeks. After the exercise protocol, it was revealed working and spatial memory were impaired in the 18 months-SED group. Pre- and post-synaptic proteins were enhanced in the groups that swam when compared to the 3- and 8 months-SED groups. Lipid peroxidation was greater in the aged mice that did not perform the physical exercise protocol and might have contributed to the cognitive impairment in this group. In conclusion, an aerobic physical exercise protocol, performed through regular swimming sessions, inhibited cognitive impairment, memory loss and lipid peroxidation in the aged mice, while pre- and post-synaptic proteins were enhanced in the hippocampus of young and aged mice.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-024-08798-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to evaluate the effects of swimming in the brain and behavior of young and aged mice. Forty-eight male C57BL/6 J mice were randomly distributed into 4 groups (n = 12 per group, 3 and 18 months old). The subdivision of the groups was: 3 months-SED, 18 months-SED, 3 months-EXE, and 18 months-EXE. SED mice did not swim, while EXE mice performed the physical exercise protocol. Training was initiated 48 h after the adaptation week. Swimming sessions consisted of 30 min, with no overload, 5 days per week, for 4 weeks. After the exercise protocol, it was revealed working and spatial memory were impaired in the 18 months-SED group. Pre- and post-synaptic proteins were enhanced in the groups that swam when compared to the 3- and 8 months-SED groups. Lipid peroxidation was greater in the aged mice that did not perform the physical exercise protocol and might have contributed to the cognitive impairment in this group. In conclusion, an aerobic physical exercise protocol, performed through regular swimming sessions, inhibited cognitive impairment, memory loss and lipid peroxidation in the aged mice, while pre- and post-synaptic proteins were enhanced in the hippocampus of young and aged mice.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体育锻炼可抑制老年小鼠的认知障碍和记忆丧失,并增强年轻小鼠和老年小鼠海马突触前后蛋白的功能
本研究旨在评估游泳对幼年和老年小鼠大脑和行为的影响。48只雄性C57BL/6 J小鼠被随机分为4组(每组12只,3个月和18个月大)。组别划分如下3个月-SED组、18个月-SED组、3个月-EXE组和18个月-EXE组。SED 小鼠不游泳,而 EXE 小鼠则进行体育锻炼。训练在适应周后 48 小时开始。游泳训练为期 4 周,每周 5 天,每次 30 分钟,不超负荷。运动方案结束后,发现18个月的SED组的工作记忆和空间记忆受损。与 3 个月和 8 个月的 SED 组相比,游泳组的突触前和突触后蛋白质均有所增强。未进行体育锻炼的老年小鼠体内脂质过氧化程度更高,这可能是导致该组小鼠认知功能受损的原因之一。总之,通过定期游泳进行有氧体育锻炼可抑制老年小鼠的认知障碍、记忆丧失和脂质过氧化,而年轻和老年小鼠海马中的突触前和突触后蛋白质都得到了增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1