High-resolution global maps of yield potential with local relevance for targeted crop production improvement

IF 23.6 Q1 FOOD SCIENCE & TECHNOLOGY Nature food Pub Date : 2024-07-29 DOI:10.1038/s43016-024-01029-3
Fernando Aramburu-Merlos, Marloes P. van Loon, Martin K. van Ittersum, Patricio Grassini
{"title":"High-resolution global maps of yield potential with local relevance for targeted crop production improvement","authors":"Fernando Aramburu-Merlos, Marloes P. van Loon, Martin K. van Ittersum, Patricio Grassini","doi":"10.1038/s43016-024-01029-3","DOIUrl":null,"url":null,"abstract":"Identifying untapped opportunities for crop production improvement in current cropland is crucial to guide food availability interventions. Here we integrated an agronomically robust bottom-up approach with machine learning to generate global maps of yield potential of high resolution (ca. 1 km2 at the Equator) and accuracy for maize, wheat and rice. These maps serve as a robust reference to benchmark farmers’ yields in the context of current cropping systems and water regimes and can help to identify areas with large room to increase crop yields. High-resolution global maps of yield potential were created through crop modelling and machine learning. These maps can help orient agricultural research and development programmes and assess food security and land use from local to regional levels.","PeriodicalId":94151,"journal":{"name":"Nature food","volume":"5 8","pages":"667-672"},"PeriodicalIF":23.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature food","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43016-024-01029-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying untapped opportunities for crop production improvement in current cropland is crucial to guide food availability interventions. Here we integrated an agronomically robust bottom-up approach with machine learning to generate global maps of yield potential of high resolution (ca. 1 km2 at the Equator) and accuracy for maize, wheat and rice. These maps serve as a robust reference to benchmark farmers’ yields in the context of current cropping systems and water regimes and can help to identify areas with large room to increase crop yields. High-resolution global maps of yield potential were created through crop modelling and machine learning. These maps can help orient agricultural research and development programmes and assess food security and land use from local to regional levels.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高分辨率全球产量潜力图,与地方相关,用于有针对性地改进作物生产
确定当前耕地中尚未开发的作物增产机会对于指导粮食供应干预措施至关重要。在此,我们将农学上稳健的自下而上方法与机器学习相结合,生成了高分辨率(赤道地区约 1 平方公里)、高精度的全球玉米、小麦和水稻产量潜力图。这些地图可作为当前耕作制度和水制度背景下农民产量基准的可靠参考,并有助于确定作物产量有较大提高空间的地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
28.50
自引率
0.00%
发文量
0
期刊最新文献
Inequality in agricultural greenhouse gas emissions intensity has risen in rural China from 1993 to 2020 Monogastric intensification benefits for emission reductions and food security Whole-chain intensification of pig and chicken farming could lower emissions with economic and food production benefits Promising prospects of nanomaterials in crop safety Adaptive solutions for potassium limitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1