Impacts of Increasing Soil Salinity on Genetic Resistance (I-3 Gene)-Based Management of Fusarium Wilt (Fusarium oxysporum f. sp. lycopercisi Race 3) in California Processing Tomatoes.
Elizabeth M Hellman, Thomas Turini, Cassandra L Swett
{"title":"Impacts of Increasing Soil Salinity on Genetic Resistance (<i>I-3</i> Gene)-Based Management of Fusarium Wilt (<i>Fusarium oxysporum</i> f. sp. <i>lycopercisi</i> Race 3) in California Processing Tomatoes.","authors":"Elizabeth M Hellman, Thomas Turini, Cassandra L Swett","doi":"10.1094/PHYTO-10-23-0402-KC","DOIUrl":null,"url":null,"abstract":"<p><p>California is the primary processing tomato (<i>Solanum lycopersicum</i>) producer in the United States. <i>Fusarium oxysporum</i> f. sp. <i>lycopercisi</i> race 3 (Fol3), the cause of Fusarium wilt, is a major driver of yield losses. Fol3 has recently been observed causing disease in resistant cultivars (<i>I-3</i> R-gene), often reported in association with high soil salinity. This study was undertaken to better understand the role of salinity in compromising resistance-based management of Fol3. Surveys established opportunity for salinity-Fol3-tomato interactions in 44% of commercial fields examined, with harmful soil salt levels up to 3.6 dS/m (<i>P</i> < 0.001), high sodium (<i>P</i> < 0.001), and high sodicity (sodium adsorption ratio > 13; <i>P</i> < 0.001). In controlled field studies of Fol3 in NaCl/CaCl<sub>2</sub>-treated soil, Fol3-resistant cultivars either only developed wilt under salt or only developed wilt above the industry non-hybrid threshold (2%) under salt across two trial years. The absence of yield differences indicates low to no economic impact of disease enhancement (<i>P</i> > 0.05). NaCl, CaCl<sub>2</sub>, and Na<sub>2</sub>SO<sub>4</sub> had no effect on Fol3 propagule production in liquid agar versus water agar controls (<i>P</i> > 0.05), although CaCl<sub>2</sub> increased propagule loads sevenfold versus ionic controls (polyethylene glycol) (<i>P</i> = 0.036). NaCl/CaCl<sub>2</sub> (2:1) reduced propagule loads up to 65% versus no salt (<i>P</i> = 0.029) in soil with pathogen-infested tomato tissue. These results together establish the opportunity for salinity-Fol3-tomato interactions and potential for salt to influence the efficacy of resistant cultivar-based management-this does not appear to be primarily due to salt enhancement of pathogen populations, pointing to a yet-unexplored direct influence of salt on host resistance.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2252-2261"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-10-23-0402-KC","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
California is the primary processing tomato (Solanum lycopersicum) producer in the United States. Fusarium oxysporum f. sp. lycopercisi race 3 (Fol3), the cause of Fusarium wilt, is a major driver of yield losses. Fol3 has recently been observed causing disease in resistant cultivars (I-3 R-gene), often reported in association with high soil salinity. This study was undertaken to better understand the role of salinity in compromising resistance-based management of Fol3. Surveys established opportunity for salinity-Fol3-tomato interactions in 44% of commercial fields examined, with harmful soil salt levels up to 3.6 dS/m (P < 0.001), high sodium (P < 0.001), and high sodicity (sodium adsorption ratio > 13; P < 0.001). In controlled field studies of Fol3 in NaCl/CaCl2-treated soil, Fol3-resistant cultivars either only developed wilt under salt or only developed wilt above the industry non-hybrid threshold (2%) under salt across two trial years. The absence of yield differences indicates low to no economic impact of disease enhancement (P > 0.05). NaCl, CaCl2, and Na2SO4 had no effect on Fol3 propagule production in liquid agar versus water agar controls (P > 0.05), although CaCl2 increased propagule loads sevenfold versus ionic controls (polyethylene glycol) (P = 0.036). NaCl/CaCl2 (2:1) reduced propagule loads up to 65% versus no salt (P = 0.029) in soil with pathogen-infested tomato tissue. These results together establish the opportunity for salinity-Fol3-tomato interactions and potential for salt to influence the efficacy of resistant cultivar-based management-this does not appear to be primarily due to salt enhancement of pathogen populations, pointing to a yet-unexplored direct influence of salt on host resistance.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.