Overcoming thermal energy storage density limits by liquid water recharge in zeolite-polymer composites

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-07-29 DOI:10.1016/j.matt.2024.06.038
{"title":"Overcoming thermal energy storage density limits by liquid water recharge in zeolite-polymer composites","authors":"","doi":"10.1016/j.matt.2024.06.038","DOIUrl":null,"url":null,"abstract":"<p>Water-adsorbent pairs for thermal energy storage (TES) show promise due to their high heat of adsorption and stable adsorption/desorption process at near-room temperature. However, their overall energy storage capacity is limited by the adsorbent’s water adsorption capacity and slow recharge rate. To address this, we propose a liquid water recharge strategy for composite TES materials featuring high-adsorption-capacity zeolite particles (silicoaluminophosphate-34 [SAPO-34]) bound by a hydrophilic polymer. This innovation achieves TES densities exceeding 1.6 kJ g<sup>−1</sup>, facilitated by liquid water retention and polymer hydration. The composites exhibit stability through more than 100 recharge/discharge cycles up to 150°C. Post-recharge, liquid water spontaneously segregates into three populations, each linked to a distinct heat storage temperature. This approach overcomes traditional limitations in adsorption-based TES, paving the way for rapidly recharged open-system thermal energy storage.</p>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.06.038","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Water-adsorbent pairs for thermal energy storage (TES) show promise due to their high heat of adsorption and stable adsorption/desorption process at near-room temperature. However, their overall energy storage capacity is limited by the adsorbent’s water adsorption capacity and slow recharge rate. To address this, we propose a liquid water recharge strategy for composite TES materials featuring high-adsorption-capacity zeolite particles (silicoaluminophosphate-34 [SAPO-34]) bound by a hydrophilic polymer. This innovation achieves TES densities exceeding 1.6 kJ g−1, facilitated by liquid water retention and polymer hydration. The composites exhibit stability through more than 100 recharge/discharge cycles up to 150°C. Post-recharge, liquid water spontaneously segregates into three populations, each linked to a distinct heat storage temperature. This approach overcomes traditional limitations in adsorption-based TES, paving the way for rapidly recharged open-system thermal energy storage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过在沸石-聚合物复合材料中注入液态水克服热能储存密度限制
用于热能储存(TES)的水吸附剂对因其吸附热量高以及在接近室温时吸附/解吸过程稳定而大有可为。然而,由于吸附剂的水吸附能力和缓慢的充电速度,它们的整体储能能力受到了限制。为解决这一问题,我们提出了一种液态水充电策略,用于复合 TES 材料,该材料具有高吸附容量的沸石颗粒(硅铝磷酸盐-34 [SAPO-34]),并与亲水性聚合物结合。这项创新通过液态水保留和聚合物水合作用,实现了超过 1.6 kJ g-1 的 TES 密度。这种复合材料在高达 150°C 的温度下,经过 100 多个充电/放电循环后仍能保持稳定。充电后,液态水会自发分离成三个种群,每个种群都与不同的蓄热温度有关。这种方法克服了基于吸附的 TES 的传统局限性,为快速充电的开放式系统热能存储铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Post-synthesis tuning of dielectric constant via ferroelectric domain wall engineering Protein dynamics inform protein structure: An interdisciplinary investigation of protein crystallization propensity ChemOS 2.0: An orchestration architecture for chemical self-driving laboratories Integration of kinks and creases enables tunable folding in meta-ribbons Tuning water-cellulose interactions via copper-coordinated mercerization for hydro-actuated, shape-memory cellulosic hydroplastics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1