Mostafa A. Rushdi, Shigeo Yoshida, Koichi Watanabe, Yuji Ohya, A. Ismaiel
{"title":"Deep Learning Approaches for Power Prediction in Wind–Solar Tower Systems","authors":"Mostafa A. Rushdi, Shigeo Yoshida, Koichi Watanabe, Yuji Ohya, A. Ismaiel","doi":"10.3390/en17153630","DOIUrl":null,"url":null,"abstract":"Wind–solar towers are a relatively new method of capturing renewable energy from solar and wind power. Solar radiation is collected and heated air is forced to move through the tower. The thermal updraft propels a wind turbine to generate electricity. Furthermore, the top of the tower’s vortex generators produces a pressure differential, which intensifies the updraft. Data were gathered from a wind–solar tower system prototype developed and established at Kyushu University in Japan. Aiming to predict the power output of the system, while knowing a set of features, the data were evaluated and utilized to build a regression model. Sensitivity analysis guided the feature selection process. Several machine learning models were utilized in this study, and the most appropriate model was chosen based on prediction quality and temporal criteria. We started with a simple linear regression model but it was inaccurate. By adding some non-linearity through using polynomial regression of the second order, the accuracy increased considerably sufficiently. Moreover, deep neural networks were trained and tested to enhance the power prediction performance. These networks performed very well, having the most powerful prediction capabilities, with a coefficient of determination R2=0.99734 after hyper-parameter tuning. A 1-D convolutional neural network achieved less accuracy with R2=0.99647, but is still considered a competitive model. A reduced model was introduced trading off some accuracy (R2=0.9916) for significantly reduced data collection requirements and effort.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"67 37","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153630","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Wind–solar towers are a relatively new method of capturing renewable energy from solar and wind power. Solar radiation is collected and heated air is forced to move through the tower. The thermal updraft propels a wind turbine to generate electricity. Furthermore, the top of the tower’s vortex generators produces a pressure differential, which intensifies the updraft. Data were gathered from a wind–solar tower system prototype developed and established at Kyushu University in Japan. Aiming to predict the power output of the system, while knowing a set of features, the data were evaluated and utilized to build a regression model. Sensitivity analysis guided the feature selection process. Several machine learning models were utilized in this study, and the most appropriate model was chosen based on prediction quality and temporal criteria. We started with a simple linear regression model but it was inaccurate. By adding some non-linearity through using polynomial regression of the second order, the accuracy increased considerably sufficiently. Moreover, deep neural networks were trained and tested to enhance the power prediction performance. These networks performed very well, having the most powerful prediction capabilities, with a coefficient of determination R2=0.99734 after hyper-parameter tuning. A 1-D convolutional neural network achieved less accuracy with R2=0.99647, but is still considered a competitive model. A reduced model was introduced trading off some accuracy (R2=0.9916) for significantly reduced data collection requirements and effort.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico