{"title":"A Review of Gene–Property Mapping of Cementitious Materials from the Perspective of Material Genome Approach","authors":"Fei Li, Yan Zhong","doi":"10.3390/ma17153640","DOIUrl":null,"url":null,"abstract":"As an important gelling material, cementitious materials are widely used in civil engineering construction. Currently, research on these materials is conducted using experimental and numerical image processing methods, which enable the observation and analysis of structural changes and mechanical properties. These methods are instrumental in designing cementitious materials with specific performance criteria, despite their resource-intensive nature. The material genome approach represents a novel trend in material research and development. The establishment of a material gene database facilitates the rapid and precise determination of relationships between characteristic genes and performance, enabling the bidirectional design of cementitious materials’ composition and properties. This paper reviews the characteristic genes of cementitious materials from nano-, micro-, and macro-scale perspectives. It summarizes the characteristic genes, analyzes expression parameters at various scales, and concludes regarding their relationship to mechanical properties. On the nanoscale, calcium hydrated silicate (C-S-H) is identified as the most important characteristic gene, with the calcium–silicon ratio being the key parameter describing its structure. On the microscale, the pore structure and bubble system are key characteristics, with parameters such as porosity, pore size distribution, pore shape, air content, and the bubble spacing coefficient directly affecting properties like frost resistance, permeability, and compressive strength. On the macroscale, the aggregate emerges as the most important component of cementitious materials. Its shape, angularity, surface texture (grain), crushing index, and water absorption are the main characteristics influencing properties such as chloride ion penetration resistance, viscosity, fluidity, and strength. By analyzing and mapping the relationship between these genes and properties across different scales, this paper offers new insights and establishes a reference framework for the targeted design of cementitious material properties.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ma17153640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As an important gelling material, cementitious materials are widely used in civil engineering construction. Currently, research on these materials is conducted using experimental and numerical image processing methods, which enable the observation and analysis of structural changes and mechanical properties. These methods are instrumental in designing cementitious materials with specific performance criteria, despite their resource-intensive nature. The material genome approach represents a novel trend in material research and development. The establishment of a material gene database facilitates the rapid and precise determination of relationships between characteristic genes and performance, enabling the bidirectional design of cementitious materials’ composition and properties. This paper reviews the characteristic genes of cementitious materials from nano-, micro-, and macro-scale perspectives. It summarizes the characteristic genes, analyzes expression parameters at various scales, and concludes regarding their relationship to mechanical properties. On the nanoscale, calcium hydrated silicate (C-S-H) is identified as the most important characteristic gene, with the calcium–silicon ratio being the key parameter describing its structure. On the microscale, the pore structure and bubble system are key characteristics, with parameters such as porosity, pore size distribution, pore shape, air content, and the bubble spacing coefficient directly affecting properties like frost resistance, permeability, and compressive strength. On the macroscale, the aggregate emerges as the most important component of cementitious materials. Its shape, angularity, surface texture (grain), crushing index, and water absorption are the main characteristics influencing properties such as chloride ion penetration resistance, viscosity, fluidity, and strength. By analyzing and mapping the relationship between these genes and properties across different scales, this paper offers new insights and establishes a reference framework for the targeted design of cementitious material properties.