Artificial Intelligence in Diabetes Management: Revolutionizing the Diagnosis of Diabetes Mellitus; a Literature Review

Alireza Keshtkar, Nazanin Ayareh, Farnaz Atighi, Reza Hamidi, Parsa Yazdanpanahi, Alireza Karimi, Arzhang Naseri, Fatemeh Hosseini, Mohammadhossein Dabbaghmanesh
{"title":"Artificial Intelligence in Diabetes Management: Revolutionizing the Diagnosis of Diabetes Mellitus; a Literature Review","authors":"Alireza Keshtkar, Nazanin Ayareh, Farnaz Atighi, Reza Hamidi, Parsa Yazdanpanahi, Alireza Karimi, Arzhang Naseri, Fatemeh Hosseini, Mohammadhossein Dabbaghmanesh","doi":"10.5812/semj-146903","DOIUrl":null,"url":null,"abstract":"Context: The diagnostic methods for diabetes mellitus (DM), a chronic metabolic disorder characterized by elevated blood sugar levels, are rapidly evolving thanks to artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL). This review explores the applications of AI in risk assessment and diagnosing different types of diabetes. Evidence Acquisition: The review highlights the effectiveness of various ML models, including support vector machines (SVMs), random forests (RFs), and DL techniques like convolutional neural networks (CNNs), in achieving high diagnostic accuracy. Challenges include limited data availability, interpretability of complex models, and the need for standardized performance metrics. Results: Machine learning methods like SVMs and RFs are highly effective at diagnosing different types of diabetes, and DL techniques like CNNs also show great promise. Conclusions: Overall, AI has immense potential to revolutionize diabetes diagnosis by facilitating risk assessment and early detection, improving treatment efficacy, and preventing severe complications.","PeriodicalId":507014,"journal":{"name":"Shiraz E-Medical Journal","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shiraz E-Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/semj-146903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Context: The diagnostic methods for diabetes mellitus (DM), a chronic metabolic disorder characterized by elevated blood sugar levels, are rapidly evolving thanks to artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL). This review explores the applications of AI in risk assessment and diagnosing different types of diabetes. Evidence Acquisition: The review highlights the effectiveness of various ML models, including support vector machines (SVMs), random forests (RFs), and DL techniques like convolutional neural networks (CNNs), in achieving high diagnostic accuracy. Challenges include limited data availability, interpretability of complex models, and the need for standardized performance metrics. Results: Machine learning methods like SVMs and RFs are highly effective at diagnosing different types of diabetes, and DL techniques like CNNs also show great promise. Conclusions: Overall, AI has immense potential to revolutionize diabetes diagnosis by facilitating risk assessment and early detection, improving treatment efficacy, and preventing severe complications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在糖尿病管理中的应用:糖尿病诊断的革命;文献综述
背景:糖尿病(DM)是一种以血糖水平升高为特征的慢性代谢性疾病,由于人工智能(AI),尤其是机器学习(ML)和深度学习(DL)的出现,糖尿病的诊断方法正在迅速发展。本综述探讨了人工智能在风险评估和不同类型糖尿病诊断中的应用。证据获取:综述强调了各种 ML 模型(包括支持向量机 (SVM)、随机森林 (RF) 和卷积神经网络 (CNN) 等 DL 技术)在实现高诊断准确性方面的有效性。面临的挑战包括有限的数据可用性、复杂模型的可解释性以及对标准化性能指标的需求。结果SVMs 和 RFs 等机器学习方法在诊断不同类型的糖尿病方面非常有效,CNNs 等 DL 技术也大有可为。结论:总体而言,人工智能在促进风险评估和早期检测、提高治疗效果和预防严重并发症方面具有巨大潜力,可为糖尿病诊断带来革命性变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Iranian Family Physicians’ Knowledge Toward Colorectal Cancer Screening, Risk Factors, and Sings and Symptoms Persian Mobile Apps for Diabetic Patients: App Review and Evaluation Study The Correlation Between Lighting Intensity, Eye Fatigue, Occupational Stress, and Sleep Quality in the Control Room Operators of Abadan Refinery Restricting Driving Privileges of Individuals with Mental Health Problems: A Legal Gap in Iran Artificial Intelligence in Diabetes Management: Revolutionizing the Diagnosis of Diabetes Mellitus; a Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1