A Comparative Study on Force-Fields for Interstitial Diffusion in α-Zr and Zr Alloys

Materials Pub Date : 2024-07-23 DOI:10.3390/ma17153634
Jing Li, Tan Shi, Chen Zhang, Ping Zhang, Shehu Adam Ibrahim, Zhipeng Sun, Yuanming Li, Chuanbao Tang, Qing Peng, Chenyang Lu
{"title":"A Comparative Study on Force-Fields for Interstitial Diffusion in α-Zr and Zr Alloys","authors":"Jing Li, Tan Shi, Chen Zhang, Ping Zhang, Shehu Adam Ibrahim, Zhipeng Sun, Yuanming Li, Chuanbao Tang, Qing Peng, Chenyang Lu","doi":"10.3390/ma17153634","DOIUrl":null,"url":null,"abstract":"Interstitial diffusion is important for radiation defect evolution in zirconium alloys. This study employed molecular dynamics simulations to investigate interstitial diffusion in α-Zr and its alloys with 1.0 at.% Nb and 1.0 at.% Sn using a variety of interatomic potentials. Pronounced differences in diffusion anisotropy were observed in pure Zr among the employed potentials. This was attributed to the considerable differences in migration barriers among the various interstitial configurations. The introduction of small concentrations of Nb and Sn solute atoms was found to significantly influence diffusion anisotropy by either directly participating in the diffusion process or altering the chemical environment around the diffusing species. Based on the moderate agreement of interstitial energetics in pure Zr, accurately describing interstitial diffusion in Zr alloys is expected to be more complex. This work underscores the importance of the careful validation and selection of interatomic potentials and highlights the need to understand the effects of solute atoms on interstitial diffusion.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"33 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ma17153634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interstitial diffusion is important for radiation defect evolution in zirconium alloys. This study employed molecular dynamics simulations to investigate interstitial diffusion in α-Zr and its alloys with 1.0 at.% Nb and 1.0 at.% Sn using a variety of interatomic potentials. Pronounced differences in diffusion anisotropy were observed in pure Zr among the employed potentials. This was attributed to the considerable differences in migration barriers among the various interstitial configurations. The introduction of small concentrations of Nb and Sn solute atoms was found to significantly influence diffusion anisotropy by either directly participating in the diffusion process or altering the chemical environment around the diffusing species. Based on the moderate agreement of interstitial energetics in pure Zr, accurately describing interstitial diffusion in Zr alloys is expected to be more complex. This work underscores the importance of the careful validation and selection of interatomic potentials and highlights the need to understand the effects of solute atoms on interstitial diffusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
α-Zr和Zr合金中间隙扩散的力场比较研究
间隙扩散对锆合金中的辐射缺陷演变非常重要。本研究采用分子动力学模拟,利用各种原子间位势研究了 α-Zr 及其与 1.0% Nb 和 1.0% Sn 的合金中的间隙扩散。在所使用的各种电位中,纯 Zr 的扩散各向异性存在明显差异。这是因为各种间隙构型之间的迁移障碍存在很大差异。研究发现,通过直接参与扩散过程或改变扩散物种周围的化学环境,引入小浓度的铌和锡溶质原子会显著影响扩散各向异性。基于纯锆中间隙能量的适度一致性,准确描述锆合金中的间隙扩散预计会更加复杂。这项研究强调了仔细验证和选择原子间势的重要性,并突出了了解溶质原子对间隙扩散影响的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photoluminescence of Chemically and Electrically Doped Two-Dimensional Monolayer Semiconductors Machine Learning-Based Prediction Models for Punching Shear Strength of Fiber-Reinforced Polymer Reinforced Concrete Slabs Using a Gradient-Boosted Regression Tree Preparation and Properties of Lightweight Aggregates from Discarded Al2O3-ZrO2-C Refractories Bending Collapse and Energy Absorption of Dual-Phase Lattice Structures Evaluation of Material Integrity Using Higher-Order Harmonic Generation in Propagating Shear Horizontal Ultrasonic Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1