Sherif Okda, Sneha Rupa Nampally, Mauro Fontana, Sven Herold, Rainer Nordmann, Stephan Rinderknecht, Tobias Melz
{"title":"Active vibration control of gearbox housing using inertial mass actuators","authors":"Sherif Okda, Sneha Rupa Nampally, Mauro Fontana, Sven Herold, Rainer Nordmann, Stephan Rinderknecht, Tobias Melz","doi":"10.1088/1361-665x/ad6656","DOIUrl":null,"url":null,"abstract":"\n The efficiency of transmission systems is influenced by the generation of vibrational and acoustic emissions. Lightweight transmission systems are even subjected to higher levels of vibration. In this paper, an economical active vibration control system is developed to control the vibration levels of an automotive gearbox housing. The gearbox's mounting points are targeted to reduce the transmitted vibrations to the car cabin. The active control system aims to target high-frequency vibrations between 1000 Hz and 5000 Hz. A compact piezoelectric inertial mass actuator is designed and tested on a gearbox-constructed setup that simulates the vibrations and noise similar to a commercial automotive transmission system. The developed test-rig is excited by a piezo stack actuator at the input shaft. Filtered-x least mean square algorithm is implemented on a high-speed microcontroller, and the vibration levels are significantly reduced using the active system. An average reduction of approximately 8.5 dB is achieved between 1000 Hz and 1500 Hz, an average reduction of approximately 14 dB is obtained between 1500 and 2000 Hz, and an average reduction of 10.8 dB is attained between 2500 and 5000 Hz.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad6656","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The efficiency of transmission systems is influenced by the generation of vibrational and acoustic emissions. Lightweight transmission systems are even subjected to higher levels of vibration. In this paper, an economical active vibration control system is developed to control the vibration levels of an automotive gearbox housing. The gearbox's mounting points are targeted to reduce the transmitted vibrations to the car cabin. The active control system aims to target high-frequency vibrations between 1000 Hz and 5000 Hz. A compact piezoelectric inertial mass actuator is designed and tested on a gearbox-constructed setup that simulates the vibrations and noise similar to a commercial automotive transmission system. The developed test-rig is excited by a piezo stack actuator at the input shaft. Filtered-x least mean square algorithm is implemented on a high-speed microcontroller, and the vibration levels are significantly reduced using the active system. An average reduction of approximately 8.5 dB is achieved between 1000 Hz and 1500 Hz, an average reduction of approximately 14 dB is obtained between 1500 and 2000 Hz, and an average reduction of 10.8 dB is attained between 2500 and 5000 Hz.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.