{"title":"3D criteria to improve real-time pressure control in water distribution network system architecture","authors":"Saeid Mohammadzade Negharchi, R. Shafaghat","doi":"10.2166/ws.2024.166","DOIUrl":null,"url":null,"abstract":"\n \n Real-time control (RTC) methods have been developed for over one decade to regulate service pressure and reduce leakage using pressure control valves in water distribution networks (WDN). The present study investigates control node selection frameworks and RTC system architecture for the field-oriented control of a rural WDN. The unique topology of the case-study area, the small size of the area, and high-pressure variety increased the considerations of the RTC system. A computer code was developed based on the method of characteristics for the hydraulic simulation of the network. The code could analyze unsteady flows through sloped pipes, implement pressure-based analysis, and regulate control valves based on the target node. Leakage reduction, pressure fluctuation reduction, and cavitation prevention were used as three criteria and constraints in the selection of control nodes. It was found that the optimal strategy would reduce the real water loss from 25 to 10%. Furthermore, key parameters in remote sensing were evaluated to minimize the number of sensors in order to further simplify the control algorithm and RTC system architecture through an artificial neural network (ANN) approach. The control function with a convergence rate of 99% was introduced.","PeriodicalId":509977,"journal":{"name":"Water Supply","volume":"24 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2024.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time control (RTC) methods have been developed for over one decade to regulate service pressure and reduce leakage using pressure control valves in water distribution networks (WDN). The present study investigates control node selection frameworks and RTC system architecture for the field-oriented control of a rural WDN. The unique topology of the case-study area, the small size of the area, and high-pressure variety increased the considerations of the RTC system. A computer code was developed based on the method of characteristics for the hydraulic simulation of the network. The code could analyze unsteady flows through sloped pipes, implement pressure-based analysis, and regulate control valves based on the target node. Leakage reduction, pressure fluctuation reduction, and cavitation prevention were used as three criteria and constraints in the selection of control nodes. It was found that the optimal strategy would reduce the real water loss from 25 to 10%. Furthermore, key parameters in remote sensing were evaluated to minimize the number of sensors in order to further simplify the control algorithm and RTC system architecture through an artificial neural network (ANN) approach. The control function with a convergence rate of 99% was introduced.