Detection and attribution of changes in precipitation extremes in China and its different climate zones

IF 4.8 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Climate Pub Date : 2024-07-19 DOI:10.1175/jcli-d-23-0770.1
Wenhui Chen, Huijuan Cui, F. Zwiers, Chao Li, Jingyun Zheng
{"title":"Detection and attribution of changes in precipitation extremes in China and its different climate zones","authors":"Wenhui Chen, Huijuan Cui, F. Zwiers, Chao Li, Jingyun Zheng","doi":"10.1175/jcli-d-23-0770.1","DOIUrl":null,"url":null,"abstract":"\nBased on the observations and the Coupled Model Intercomparison Project phase 6 (CMIP6) multi-model simulations, we conducted a detection and attribution analysis for the observed changes in intensity and frequency indices of extreme precipitation during 1961-2014 over the whole of China and within distinct climate regions across the country. A space-time analysis is simultaneously applied in detection so that spatial structure on the signals is considered. Results show that the CMIP6 models can simulate the observed general increases of extreme precipitation indices during the historical period except for the drying trends from southwestern to northeastern China. The anthropogenic signal (ANT) is detectable and attributable to the observed increase of extreme precipitation over China, with human-induced greenhouse gas (GHG) increases being the dominant contributor. Additionally, we also detected the ANT and GHG signals in China’s Temperate continental, Subtropical-tropical monsoon, and Plateau mountain climate zones, demonstrating the role of human activity in historical extreme precipitation changes on much smaller spatial scales.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0770.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the observations and the Coupled Model Intercomparison Project phase 6 (CMIP6) multi-model simulations, we conducted a detection and attribution analysis for the observed changes in intensity and frequency indices of extreme precipitation during 1961-2014 over the whole of China and within distinct climate regions across the country. A space-time analysis is simultaneously applied in detection so that spatial structure on the signals is considered. Results show that the CMIP6 models can simulate the observed general increases of extreme precipitation indices during the historical period except for the drying trends from southwestern to northeastern China. The anthropogenic signal (ANT) is detectable and attributable to the observed increase of extreme precipitation over China, with human-induced greenhouse gas (GHG) increases being the dominant contributor. Additionally, we also detected the ANT and GHG signals in China’s Temperate continental, Subtropical-tropical monsoon, and Plateau mountain climate zones, demonstrating the role of human activity in historical extreme precipitation changes on much smaller spatial scales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国及其不同气候带极端降水变化的探测与归因
基于观测资料和耦合模式相互比较项目第 6 阶段(CMIP6)多模式模拟,我们对 1961-2014 年期间观测到的全中国和全国不同气候区极端降水强度和频率指数的变化进行了探测和归因分析。在探测过程中同时进行了时空分析,以考虑信号的空间结构。结果表明,CMIP6 模式可以模拟历史时期观测到的极端降水指数的总体增长,除了从西南到东北的干燥趋势。人为信号(ANT)是可以探测到的,并且可归因于观测到的中国极端降水的增加,而人为温室气体(GHG)的增加是主要原因。此外,我们还在中国的温带大陆性气候区、亚热带-热带季风气候区和高原山地气候区探测到了人为信号和温室气体信号,证明了人类活动在更小的空间尺度上对历史极端降水变化的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Climate
Journal of Climate 地学-气象与大气科学
CiteScore
9.30
自引率
14.30%
发文量
490
审稿时长
7.5 months
期刊介绍: The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.
期刊最新文献
Reconstruction of historical site-scale dust optical depth (DOD) time series from surface dust records and satellite retrievals in northern China: application to the evaluation of DOD in CMIP6 historical simulations Revisiting the role of atmospheric initial signals in predicting ENSO Changes of the SST seasonal cycle in a warmer North Pacific without ocean dynamical feedbacks Cross-time scale analysis of year-round atmospheric circulation patterns and their impacts on rainfall and temperatures in the Iberian Peninsula Clusters of Regional Precipitation Seasonality Change in the Community Earth System Model version 2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1