Ali Heydari, Qusai Soud, Mohammad Tradat, Ahmad R. Gharaibeh, Najmeh Fallahtafti, Jeremy Rodriguez, Bahgat Sammakia
{"title":"L2A Cdus Performance and Considerations for Server Rooms Upgrade with Conventional Air Conditioning","authors":"Ali Heydari, Qusai Soud, Mohammad Tradat, Ahmad R. Gharaibeh, Najmeh Fallahtafti, Jeremy Rodriguez, Bahgat Sammakia","doi":"10.1115/1.4065942","DOIUrl":null,"url":null,"abstract":"\n As web-based AI applications are growing rapidly, server rooms face escalating computational demands, prompting enterprises to either upgrade their facilities or outsource to co-located sites. This growth strains conventional HVAC systems, which struggle to handle the substantial thermal load, often resulting in hotspots. Liquid-to-Air (L2A) Coolant Distribution Units (CDUs) emerge as a solution, efficiently cooling servers by circulating liquid coolant through cooling loops mounted on each server board. In this study, the performance of a 24-kW L2A CDU is evaluated across various scenarios, emphasizing cooling effect, stability, and reliability. Experimental tests involve a rack with three thermal test vehicles (TTVs), monitoring both liquid coolant and air sides for analysis. Tests are conducted in a limited air-conditioned environment, resembling upgraded server rooms with conventional AC systems. The study also assesses the impact of high-power density cooling units on the server room environment, measuring noise, air velocity, and ambient temperature against ASHRAE standards for human comfort. Recommendations for optimal practices and potential system improvements are included in the research, addressing the growing need for efficient cooling solutions amidst escalating computational demands.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065942","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As web-based AI applications are growing rapidly, server rooms face escalating computational demands, prompting enterprises to either upgrade their facilities or outsource to co-located sites. This growth strains conventional HVAC systems, which struggle to handle the substantial thermal load, often resulting in hotspots. Liquid-to-Air (L2A) Coolant Distribution Units (CDUs) emerge as a solution, efficiently cooling servers by circulating liquid coolant through cooling loops mounted on each server board. In this study, the performance of a 24-kW L2A CDU is evaluated across various scenarios, emphasizing cooling effect, stability, and reliability. Experimental tests involve a rack with three thermal test vehicles (TTVs), monitoring both liquid coolant and air sides for analysis. Tests are conducted in a limited air-conditioned environment, resembling upgraded server rooms with conventional AC systems. The study also assesses the impact of high-power density cooling units on the server room environment, measuring noise, air velocity, and ambient temperature against ASHRAE standards for human comfort. Recommendations for optimal practices and potential system improvements are included in the research, addressing the growing need for efficient cooling solutions amidst escalating computational demands.
期刊介绍:
The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems.
Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.