Detection of the Metcalfa pruinosa (Hemiptera: Flatidae) pest on the Jujube plant (Ziziphus jujuba) using a sequence of YOLOv5 models

Atilla Erdinç, Hilal Erdoğan
{"title":"Detection of the Metcalfa pruinosa (Hemiptera: Flatidae) pest on the Jujube plant (Ziziphus jujuba) using a sequence of YOLOv5 models","authors":"Atilla Erdinç, Hilal Erdoğan","doi":"10.30910/turkjans.1475954","DOIUrl":null,"url":null,"abstract":"This study aimed to detect the adult of the pest Metcalfa pruinosa observed on jujube plants using the YOLOv5 algorithm's v5s, v5m, and v5l models. Performance metrics, including box_loss, obj_loss, precision, recall, mAP_0.5, and mAP_0.5:0.95, were observed in the research. In the YOLOv5s model, the box_loss and obj_loss performance metrics were found to be the highest, with values of 0.02858 and 0.0055256, respectively. In the YOLOv5m model, the recall performance metric was identified as the highest, with a value of 0.98127. In the YOLOv5l model, precision, mAP_0.5, and mAP_0.5:0.95 performance metrics were identified as the highest, with values of 0.98122, 0.99500, and 0.67864, respectively. Consequently, the YOLOv5l model exhibits higher precision compared to others. It is believed that the YOLOv5l model is sufficient for the detection of the Metcalfa pruinosa pest.","PeriodicalId":438084,"journal":{"name":"Türk Tarım ve Doğa Bilimleri Dergisi","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Türk Tarım ve Doğa Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30910/turkjans.1475954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to detect the adult of the pest Metcalfa pruinosa observed on jujube plants using the YOLOv5 algorithm's v5s, v5m, and v5l models. Performance metrics, including box_loss, obj_loss, precision, recall, mAP_0.5, and mAP_0.5:0.95, were observed in the research. In the YOLOv5s model, the box_loss and obj_loss performance metrics were found to be the highest, with values of 0.02858 and 0.0055256, respectively. In the YOLOv5m model, the recall performance metric was identified as the highest, with a value of 0.98127. In the YOLOv5l model, precision, mAP_0.5, and mAP_0.5:0.95 performance metrics were identified as the highest, with values of 0.98122, 0.99500, and 0.67864, respectively. Consequently, the YOLOv5l model exhibits higher precision compared to others. It is believed that the YOLOv5l model is sufficient for the detection of the Metcalfa pruinosa pest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 YOLOv5 模型序列检测枣树上的害虫 Metcalfa pruinosa(半翅目:扁科
本研究旨在使用 YOLOv5 算法的 v5s、v5m 和 v5l 模型检测在枣类植物上观察到的害虫 Metcalfa pruinosa 的成虫。研究中观察到的性能指标包括 box_loss、obj_loss、精确度、召回率、mAP_0.5 和 mAP_0.5:0.95。在 YOLOv5s 模型中,box_loss 和 obj_loss 的性能指标最高,分别为 0.02858 和 0.0055256。在 YOLOv5m 模型中,召回率性能指标最高,值为 0.98127。在 YOLOv5l 模型中,精确度、mAP_0.5 和 mAP_0.5:0.95 性能指标最高,分别为 0.98122、0.99500 和 0.67864。因此,与其他模型相比,YOLOv5l 模型表现出更高的精度。我们认为,YOLOv5l 模型足以用于检测 Metcalfa pruinosa 害虫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Üretici Gözünden Biyolojik Mücadele Detection of the Metcalfa pruinosa (Hemiptera: Flatidae) pest on the Jujube plant (Ziziphus jujuba) using a sequence of YOLOv5 models Coğrafi İşaretin Tüketici Davranışlarına Etkisinin Analizi: Konya İli Selçuklu İlçesi Örneği Boyut Azaltılmış Temel Bileşenler ve Lasso Regresyonları Kullanılarak Spektral Veri Tabanlı Bazı Kimyasal Özelliklerin Belirlenmesi Lasiobelonium lonicerae (Alb. & Schwein.) Raitv. = A Novel Record for Türkiye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1