On the optimal multi-objective design of fractional order PID controller with antlion optimization

IF 0.6 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Knowledge-Based and Intelligent Engineering Systems Pub Date : 2024-07-03 DOI:10.3233/kes-230176
Mangal Singh, Mahesh Singh, Shimpy Ralhan, Apoorva Shastri
{"title":"On the optimal multi-objective design of fractional order PID controller with antlion optimization","authors":"Mangal Singh, Mahesh Singh, Shimpy Ralhan, Apoorva Shastri","doi":"10.3233/kes-230176","DOIUrl":null,"url":null,"abstract":"This study introduces an optimal multi-objective design approach for a robust multimachine Fractional Order PID Controller (FOPID) using the Antlion algorithm. The research focuses on the need for effective stabilizers in multimachine power systems by employing traditional speed-based lead-lag FOPID controllers. The study formulates a multi-objective problem, optimizing the damping factor and damping ratio of lightly damped electromechanical modes to maximize a composite set of objective functions, tackled through the Antlion algorithm. Stability analysis of Single-Machine Infinite-Bus (SMIB) and multimachine power systems is conducted based on rotor speed and power deviation minimization in the time domain response, along with damping ratio and eigenvalue analysis. The proposed approach is implemented and tested on three IEEE test cases, showcasing significant improvements in stability through the reduction of maximum overshoot (Mp) and settling time (ts) of speed deviation. Comparative analysis with other optimization-based FOPID controllers underscores the superiority of the proposed approach in enhancing stability in multimachine power systems. The main impact of this research lies in its contribution to the advancement of stability enhancement techniques in multimachine power systems, offering a systematic framework for optimal FOPID controller design and empowering decision-making processes in power engineering.","PeriodicalId":44076,"journal":{"name":"International Journal of Knowledge-Based and Intelligent Engineering Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Knowledge-Based and Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/kes-230176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an optimal multi-objective design approach for a robust multimachine Fractional Order PID Controller (FOPID) using the Antlion algorithm. The research focuses on the need for effective stabilizers in multimachine power systems by employing traditional speed-based lead-lag FOPID controllers. The study formulates a multi-objective problem, optimizing the damping factor and damping ratio of lightly damped electromechanical modes to maximize a composite set of objective functions, tackled through the Antlion algorithm. Stability analysis of Single-Machine Infinite-Bus (SMIB) and multimachine power systems is conducted based on rotor speed and power deviation minimization in the time domain response, along with damping ratio and eigenvalue analysis. The proposed approach is implemented and tested on three IEEE test cases, showcasing significant improvements in stability through the reduction of maximum overshoot (Mp) and settling time (ts) of speed deviation. Comparative analysis with other optimization-based FOPID controllers underscores the superiority of the proposed approach in enhancing stability in multimachine power systems. The main impact of this research lies in its contribution to the advancement of stability enhancement techniques in multimachine power systems, offering a systematic framework for optimal FOPID controller design and empowering decision-making processes in power engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用蚂蚁雄兵优化分数阶 PID 控制器的多目标优化设计
本研究介绍了一种使用 Antlion 算法的鲁棒性多机分数阶 PID 控制器 (FOPID) 的多目标优化设计方法。研究的重点是在多机电力系统中采用传统的基于速度的前导滞后 FOPID 控制器,以满足有效稳定器的需求。研究提出了一个多目标问题,即优化轻阻尼机电模式的阻尼系数和阻尼比,以最大化一组复合目标函数,并通过 Antlion 算法加以解决。基于时域响应中转子速度和功率偏差最小化以及阻尼比和特征值分析,对单机无限总线(SMIB)和多机电力系统进行了稳定性分析。所提出的方法在三个 IEEE 测试案例中进行了实施和测试,通过减少速度偏差的最大过冲(Mp)和稳定时间(ts),显著提高了稳定性。与其他基于优化的 FOPID 控制器的对比分析表明,所提出的方法在增强多机电力系统稳定性方面具有优势。这项研究的主要影响在于它对多机电力系统稳定性增强技术的进步做出了贡献,为 FOPID 控制器的优化设计提供了一个系统框架,并增强了电力工程决策过程的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
22
期刊最新文献
On the optimal multi-objective design of fractional order PID controller with antlion optimization Eternal 1-security number of a fuzzy graph with level J Interval type-2 fuzzy approach for retinopathy detection in fundus images DeepGAN: Utilizing generative adversarial networks for improved deep learning Fast retrieval of multi-modal embeddings for e-commerce applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1