A multioutput classifier model for breast cancer treatment prediction

Emad Abd Al Rahman , Nur Intan Raihana Ruhaiyem , Majed Bouchahma
{"title":"A multioutput classifier model for breast cancer treatment prediction","authors":"Emad Abd Al Rahman ,&nbsp;Nur Intan Raihana Ruhaiyem ,&nbsp;Majed Bouchahma","doi":"10.1016/j.ibmed.2024.100158","DOIUrl":null,"url":null,"abstract":"<div><p>A growing number of new cases and fatalities occur each year due to breast cancer, making it the most frequent malignancy globally. Utilizing a multioutput classifier technique with algorithms such as CatBoost, XGBoost, NN, and NN Binary, this work presents a new model for predicting breast cancer treatments: surgery, radiotherapy, and chemotherapy. We tackle the pressing need for accurate medical treatments by developing a model to enhance the predicted accuracy of breast cancer treatment outcomes. The model accomplishes impressive results in predicting surgical outcomes; in particular, Neural Networks (NN and NN Binary) perform exceptionally well in terms of recall and precision, reaching 97 % accuracy and 98 % F1-scores. While the model's accuracy is only about 63 % for radiotherapy, it shows a promising recall of up to 84 %. Accuracy and precision in chemotherapy predictions remain stable at 82 %, with AUC-ROC values of up to 89 %, suggesting excellent discrimination ability. By combining multioutput classifiers with sophisticated algorithms, we hope to make treatment prediction models more tailored to individual breast cancer patient profiles, which might usher in a new era of tailored treatment plans and meet the rising demand for precision medicine in cancer care.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100158"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000255/pdfft?md5=495fcee4686f4acc2b598a0adea6e4ab&pid=1-s2.0-S2666521224000255-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A growing number of new cases and fatalities occur each year due to breast cancer, making it the most frequent malignancy globally. Utilizing a multioutput classifier technique with algorithms such as CatBoost, XGBoost, NN, and NN Binary, this work presents a new model for predicting breast cancer treatments: surgery, radiotherapy, and chemotherapy. We tackle the pressing need for accurate medical treatments by developing a model to enhance the predicted accuracy of breast cancer treatment outcomes. The model accomplishes impressive results in predicting surgical outcomes; in particular, Neural Networks (NN and NN Binary) perform exceptionally well in terms of recall and precision, reaching 97 % accuracy and 98 % F1-scores. While the model's accuracy is only about 63 % for radiotherapy, it shows a promising recall of up to 84 %. Accuracy and precision in chemotherapy predictions remain stable at 82 %, with AUC-ROC values of up to 89 %, suggesting excellent discrimination ability. By combining multioutput classifiers with sophisticated algorithms, we hope to make treatment prediction models more tailored to individual breast cancer patient profiles, which might usher in a new era of tailored treatment plans and meet the rising demand for precision medicine in cancer care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于乳腺癌治疗预测的多输出分类器模型
乳腺癌是全球最常见的恶性肿瘤,每年新增病例和死亡人数不断增加。本研究利用 CatBoost、XGBoost、NN 和 NN Binary 等算法的多输出分类器技术,提出了一种预测乳腺癌治疗(手术、放疗和化疗)的新模型。我们通过开发一种模型来提高乳腺癌治疗结果预测的准确性,从而满足人们对准确医疗的迫切需求。该模型在预测手术结果方面取得了令人印象深刻的成果;特别是,神经网络(NN 和 NN 二进制)在召回率和精确度方面表现出色,达到了 97% 的准确率和 98% 的 F1 分数。虽然该模型在放疗方面的准确率仅为 63%,但召回率却高达 84%,表现令人鼓舞。化疗预测的准确率和精确度稳定在 82%,AUC-ROC 值高达 89%,显示出卓越的分辨能力。我们希望通过将多输出分类器与复杂的算法相结合,使治疗预测模型更符合乳腺癌患者的个体情况,从而开创量身定制治疗方案的新时代,满足癌症护理领域对精准医疗不断增长的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1