Emad Abd Al Rahman , Nur Intan Raihana Ruhaiyem , Majed Bouchahma
{"title":"A multioutput classifier model for breast cancer treatment prediction","authors":"Emad Abd Al Rahman , Nur Intan Raihana Ruhaiyem , Majed Bouchahma","doi":"10.1016/j.ibmed.2024.100158","DOIUrl":null,"url":null,"abstract":"<div><p>A growing number of new cases and fatalities occur each year due to breast cancer, making it the most frequent malignancy globally. Utilizing a multioutput classifier technique with algorithms such as CatBoost, XGBoost, NN, and NN Binary, this work presents a new model for predicting breast cancer treatments: surgery, radiotherapy, and chemotherapy. We tackle the pressing need for accurate medical treatments by developing a model to enhance the predicted accuracy of breast cancer treatment outcomes. The model accomplishes impressive results in predicting surgical outcomes; in particular, Neural Networks (NN and NN Binary) perform exceptionally well in terms of recall and precision, reaching 97 % accuracy and 98 % F1-scores. While the model's accuracy is only about 63 % for radiotherapy, it shows a promising recall of up to 84 %. Accuracy and precision in chemotherapy predictions remain stable at 82 %, with AUC-ROC values of up to 89 %, suggesting excellent discrimination ability. By combining multioutput classifiers with sophisticated algorithms, we hope to make treatment prediction models more tailored to individual breast cancer patient profiles, which might usher in a new era of tailored treatment plans and meet the rising demand for precision medicine in cancer care.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100158"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000255/pdfft?md5=495fcee4686f4acc2b598a0adea6e4ab&pid=1-s2.0-S2666521224000255-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A growing number of new cases and fatalities occur each year due to breast cancer, making it the most frequent malignancy globally. Utilizing a multioutput classifier technique with algorithms such as CatBoost, XGBoost, NN, and NN Binary, this work presents a new model for predicting breast cancer treatments: surgery, radiotherapy, and chemotherapy. We tackle the pressing need for accurate medical treatments by developing a model to enhance the predicted accuracy of breast cancer treatment outcomes. The model accomplishes impressive results in predicting surgical outcomes; in particular, Neural Networks (NN and NN Binary) perform exceptionally well in terms of recall and precision, reaching 97 % accuracy and 98 % F1-scores. While the model's accuracy is only about 63 % for radiotherapy, it shows a promising recall of up to 84 %. Accuracy and precision in chemotherapy predictions remain stable at 82 %, with AUC-ROC values of up to 89 %, suggesting excellent discrimination ability. By combining multioutput classifiers with sophisticated algorithms, we hope to make treatment prediction models more tailored to individual breast cancer patient profiles, which might usher in a new era of tailored treatment plans and meet the rising demand for precision medicine in cancer care.