Monte Carlo simulation of atmospheric radiative forcings using a path-integral formulation approach for spectro-radiative sensitivities

IF 2.3 3区 物理与天体物理 Q2 OPTICS Journal of Quantitative Spectroscopy & Radiative Transfer Pub Date : 2024-07-17 DOI:10.1016/j.jqsrt.2024.109123
Nada Mourtaday , Mégane Bati , Stéphane Blanco , Jean-Louis Dufresne , Mouna El Hafi , Vincent Eymet , Vincent Forest , Richard Fournier , Jacques Gautrais , Paule Lapeyre , Yaniss Nyffenegger-Péré , Najda Villefranque
{"title":"Monte Carlo simulation of atmospheric radiative forcings using a path-integral formulation approach for spectro-radiative sensitivities","authors":"Nada Mourtaday ,&nbsp;Mégane Bati ,&nbsp;Stéphane Blanco ,&nbsp;Jean-Louis Dufresne ,&nbsp;Mouna El Hafi ,&nbsp;Vincent Eymet ,&nbsp;Vincent Forest ,&nbsp;Richard Fournier ,&nbsp;Jacques Gautrais ,&nbsp;Paule Lapeyre ,&nbsp;Yaniss Nyffenegger-Péré ,&nbsp;Najda Villefranque","doi":"10.1016/j.jqsrt.2024.109123","DOIUrl":null,"url":null,"abstract":"<div><p>We present recent advances in path-integral formulations designed for unbiased Monte Carlo sensitivity estimation (in the form of partial derivatives) within a coupled physics model. We establish the theoretical foundation and illustrate the approach by estimating instantaneous atmospheric radiative forcings. In climate studies, these quantities amount for the change in top-of-atmosphere (TOA) net radiative flux induced by an isolated change in surface or atmospheric constitution. Based on a path-integral framework, our approach results in estimations consistent with well-established radiative forcings in the climate community. We highlight how physics coupling through path-integral formulations yields unbiased sensitivity estimation of a radiative quantity (integrated TOA flux) to a spectroscopic parameter (fraction change in gas concentration). Furthermore, we emphasize the method’s scalability, demonstrating its compatibility with computer science acceleration techniques. These latter play a key role in rendering the computational time weakly sensitive to the system’s multidimensional and multiphysics complexity.</p></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"327 ","pages":"Article 109123"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324002309","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present recent advances in path-integral formulations designed for unbiased Monte Carlo sensitivity estimation (in the form of partial derivatives) within a coupled physics model. We establish the theoretical foundation and illustrate the approach by estimating instantaneous atmospheric radiative forcings. In climate studies, these quantities amount for the change in top-of-atmosphere (TOA) net radiative flux induced by an isolated change in surface or atmospheric constitution. Based on a path-integral framework, our approach results in estimations consistent with well-established radiative forcings in the climate community. We highlight how physics coupling through path-integral formulations yields unbiased sensitivity estimation of a radiative quantity (integrated TOA flux) to a spectroscopic parameter (fraction change in gas concentration). Furthermore, we emphasize the method’s scalability, demonstrating its compatibility with computer science acceleration techniques. These latter play a key role in rendering the computational time weakly sensitive to the system’s multidimensional and multiphysics complexity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用光谱辐射敏感性路径积分公式法对大气辐射强迫进行蒙特卡罗模拟
我们介绍了路径积分公式的最新进展,这些公式是为在耦合物理模型中进行无偏蒙特卡罗敏感性估计(部分导数形式)而设计的。我们建立了理论基础,并通过估算瞬时大气辐射强迫来说明该方法。在气候研究中,这些量相当于由地表或大气构成的孤立变化引起的大气顶部(TOA)净辐射通量的变化。基于路径积分框架,我们的方法得出的估计结果与气候界公认的辐射强迫相一致。我们着重介绍了通过路径积分公式进行物理耦合如何产生辐射量(综合 TOA 通量)对光谱参数(气体浓度的分数变化)的无偏敏感性估计。此外,我们还强调了该方法的可扩展性,展示了它与计算机科学加速技术的兼容性。后者在使计算时间对系统的多维和多物理复杂性不那么敏感方面发挥了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
期刊最新文献
Update Granada–Amsterdam Light Scattering Database Line-shape parameters and their temperature dependence for self-broadened CO2 lines in the 296 K- 1250 K range by requantized classical molecular dynamics simulations The j and k dependencies of N2-, O2-, and air-broadened halfwidths of the CH3CN molecule Impacts of scattering plane randomization on lidar multiple scattering polarization signals from water clouds Stark broadening of Sn II spectral lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1