Calibration of CFOSAT Off-Nadir SWIM SWH Product Based on CNN-LSTM Model

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Earth and Space Science Pub Date : 2024-07-27 DOI:10.1029/2023EA003386
Rui Zhang, Jinpeng Qi, Qiushuang Yan, Chenqing Fan, Yuchao Yang, Jie Zhang, Yong Wan
{"title":"Calibration of CFOSAT Off-Nadir SWIM SWH Product Based on CNN-LSTM Model","authors":"Rui Zhang,&nbsp;Jinpeng Qi,&nbsp;Qiushuang Yan,&nbsp;Chenqing Fan,&nbsp;Yuchao Yang,&nbsp;Jie Zhang,&nbsp;Yong Wan","doi":"10.1029/2023EA003386","DOIUrl":null,"url":null,"abstract":"<p>High-precision observation of significant wave height (SWH) is crucial for marine research. The Surface Waves Investigation and Monitoring (SWIM) aboard the China France Oceanography Satellite (CFOSAT) provides the ocean wave spectrum that allows for the calculation of the off-nadir SWH parameters, but there exists a certain bias with the in-situ SWH values. To improve the accuracy of the SWH calculation bias from the off-nadir 6°, 8°, 10° wave spectra and the whole combined spectrum, this paper establishes a spatio-temporal hybrid model that combines convolutional neural network (CNN) and long short-term memory network (LSTM). Additionally, to further correct bias exhibited under high sea state, we introduce a bias correction module based on deep neural network (DNN) to adjust the SWIM off-nadir SWH greater than 4 m. The experimental results demonstrate a significant enhancement in the accuracy of corrected SWIM off-nadir SWH, and the best calibration result is 10° with 0.267 m root mean square error (RMSE), and 0.979 correlation coefficient (<i>R</i>) compared with the ERA5 value. We conducted a comprehensive study and analysis on the performance of the proposed model under different wave heights, extreme sea states, and wind and swell regions. Meanwhile, the buoy and altimeters are leveraged to render further evaluation the RMSE of the corrected SWH is less than 0.5 m.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003386","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003386","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

High-precision observation of significant wave height (SWH) is crucial for marine research. The Surface Waves Investigation and Monitoring (SWIM) aboard the China France Oceanography Satellite (CFOSAT) provides the ocean wave spectrum that allows for the calculation of the off-nadir SWH parameters, but there exists a certain bias with the in-situ SWH values. To improve the accuracy of the SWH calculation bias from the off-nadir 6°, 8°, 10° wave spectra and the whole combined spectrum, this paper establishes a spatio-temporal hybrid model that combines convolutional neural network (CNN) and long short-term memory network (LSTM). Additionally, to further correct bias exhibited under high sea state, we introduce a bias correction module based on deep neural network (DNN) to adjust the SWIM off-nadir SWH greater than 4 m. The experimental results demonstrate a significant enhancement in the accuracy of corrected SWIM off-nadir SWH, and the best calibration result is 10° with 0.267 m root mean square error (RMSE), and 0.979 correlation coefficient (R) compared with the ERA5 value. We conducted a comprehensive study and analysis on the performance of the proposed model under different wave heights, extreme sea states, and wind and swell regions. Meanwhile, the buoy and altimeters are leveraged to render further evaluation the RMSE of the corrected SWH is less than 0.5 m.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 CNN-LSTM 模型的 CFOSAT 离中天线 SWIM SWH 产品校准
高精度观测显波高度(SWH)对海洋研究至关重要。中法海洋卫星(CFOSAT)上的表面波调查与监测(SWIM)提供的海洋波谱可用于计算离中线 SWH 参数,但原位 SWH 值存在一定偏差。为了提高从偏底角 6°、8°、10° 波谱和整个组合波谱计算 SWH 偏差的精度,本文建立了一个结合卷积神经网络(CNN)和长短期记忆网络(LSTM)的时空混合模型。实验结果表明,校正后的 SWIM 离底 SWH 的精度显著提高,最佳校正结果为 10°,均方根误差(RMSE)为 0.267 m,与 ERA5 值的相关系数(R)为 0.979。我们对提出的模式在不同波高、极端海况和风浪区域下的性能进行了全面研究和分析。同时,利用浮标和高度计对修正后的 SWH 均方根误差小于 0.5 米进行了进一步评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
期刊最新文献
Can Large Strains Be Accommodated by Small Faults: “Brittle Flow of Rocks” Revised 3-D Subsurface Geophysical Modeling of the Charity Shoal Structure: A Probable Late Proterozoic-Early Paleozoic Simple Impact Structure in Eastern Lake Ontario Study on Acoustic Variability Affected by Upper Ocean Dynamics in South Eastern Arabian Sea Monthly Prediction on Summer Extreme Precipitation With a Deep Learning Approach: Experiments Over the Mid-To-Lower Reaches of the Yangtze River A New Generation of Hydrological Condition Simulator Employing Physical Models and Satellite-Based Meteorological Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1