A New Generation of Hydrological Condition Simulator Employing Physical Models and Satellite-Based Meteorological Data

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Earth and Space Science Pub Date : 2024-11-17 DOI:10.1029/2023EA003228
Wenchao Ma, Kenshi Hibino, Kosuke Yamamoto, Misako Kachi, Riko Oki, Haruya Yoshikawa, Kei Yoshimura
{"title":"A New Generation of Hydrological Condition Simulator Employing Physical Models and Satellite-Based Meteorological Data","authors":"Wenchao Ma,&nbsp;Kenshi Hibino,&nbsp;Kosuke Yamamoto,&nbsp;Misako Kachi,&nbsp;Riko Oki,&nbsp;Haruya Yoshikawa,&nbsp;Kei Yoshimura","doi":"10.1029/2023EA003228","DOIUrl":null,"url":null,"abstract":"<p>Determining the distribution and dynamics of water on land at any given moment poses a significant challenge due to the constraints of observation. Consequently, as advancements in land surface models (LSMs) have been made, numerical simulation has emerged as an increasingly accurate and effective method for hydrological research. Nonetheless, systems that represent multiple land surface parameters in a near-real-time manner are scarce. In this study, we present an innovative land surface and river simulation system, termed Today's Earth (TE), which generates state and flux values for the near-surface environment with multiple outputs in near-real-time. There are currently three versions of TE, distinguished by the forcing data utilized: JRA-55 version, employing the Japanese 55-year Reanalysis (JRA-55, from 1958 to the present); GSMaP version, utilizing, the Global Satellite Mapping of Precipitation (GSMaP, from 2001 to the present), and MODIS version, utilizing the Moderate Resolution Imaging Spectroradiometer (MODIS, from 2003 to the present). These long-term forcing data set allow for outputs of the JRA-55 version from 1958, the GSMaP version from 2001, and the MODIS version from 2003. Aiming to provide water and energy values on a global scale in real-time, the TE system utilizes the LSM Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) (Takata et al., 2003, https://doi.org/10.1016/s0921-8181(03)00030-4; Yamazaki et al., 2011, https://doi.org/10.1029/2010wr009726) at a horizontal resolution of 0.5°, along with the river routing model CaMa-Flood (Yamazaki et al., 2011, https://doi.org/10.1029/2010wr009726) at a horizontal resolution of 0.25°. Both land surface and river products are available in 3-hourly, daily, and monthly intervals across all three versions. A notable feature of TE is its ability to release both state and flux parameters in near-real-time, offering convenience for various aspects of hydrological research. In addition to presenting the general features of TE-Global, this study examines the performance of snow depth, soil moisture, and river discharge data in daily intervals from 2003 to 2021, with validation spanning 2003 to 2016. When comparing snow depth results, the correlation coefficient ranged between 0.644 and 0.658, while for soil moisture it ranged between 0.471 and 0.494. These findings suggest that the LSM yields comparable results when utilizing JRA-55, MODIS, or GSMaP. Interestingly, river output from the three products exhibited distinct characteristics varying from GSMaP to JRA-55 and MODIS. For river discharge, the correlation coefficient ranged from 0.494 to 0.519, the root mean square error ranged from 3,730 m<sup>3</sup>/s to 6,330 m<sup>3</sup>/s, and the mean absolute error ranged from 3,000 m<sup>3</sup>/s to 5,160 m<sup>3</sup>/s among the different forcing versions. The overall bias in river discharge from GSMaP was 1,570 m<sup>3</sup>/s, in contrast to −589 m<sup>3</sup>/s for JRA-55 and −200 m<sup>3</sup>/s for MODIS. These metrics demonstrate that the TE system is capable of generating practical land surface and river products, highlighting differences arising from the use of various types of forcing data. This comprehensive system would be valuable for monitoring water-related movements, predicting disasters, and contributing to sophisticated water resource management. Regarding its application, the TE system has been included in the World Meteorological Organization as a Global Hydrological Modelling System. All TE-Global products can be freely accessed through File Transfer Protocol.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003228","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003228","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the distribution and dynamics of water on land at any given moment poses a significant challenge due to the constraints of observation. Consequently, as advancements in land surface models (LSMs) have been made, numerical simulation has emerged as an increasingly accurate and effective method for hydrological research. Nonetheless, systems that represent multiple land surface parameters in a near-real-time manner are scarce. In this study, we present an innovative land surface and river simulation system, termed Today's Earth (TE), which generates state and flux values for the near-surface environment with multiple outputs in near-real-time. There are currently three versions of TE, distinguished by the forcing data utilized: JRA-55 version, employing the Japanese 55-year Reanalysis (JRA-55, from 1958 to the present); GSMaP version, utilizing, the Global Satellite Mapping of Precipitation (GSMaP, from 2001 to the present), and MODIS version, utilizing the Moderate Resolution Imaging Spectroradiometer (MODIS, from 2003 to the present). These long-term forcing data set allow for outputs of the JRA-55 version from 1958, the GSMaP version from 2001, and the MODIS version from 2003. Aiming to provide water and energy values on a global scale in real-time, the TE system utilizes the LSM Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) (Takata et al., 2003, https://doi.org/10.1016/s0921-8181(03)00030-4; Yamazaki et al., 2011, https://doi.org/10.1029/2010wr009726) at a horizontal resolution of 0.5°, along with the river routing model CaMa-Flood (Yamazaki et al., 2011, https://doi.org/10.1029/2010wr009726) at a horizontal resolution of 0.25°. Both land surface and river products are available in 3-hourly, daily, and monthly intervals across all three versions. A notable feature of TE is its ability to release both state and flux parameters in near-real-time, offering convenience for various aspects of hydrological research. In addition to presenting the general features of TE-Global, this study examines the performance of snow depth, soil moisture, and river discharge data in daily intervals from 2003 to 2021, with validation spanning 2003 to 2016. When comparing snow depth results, the correlation coefficient ranged between 0.644 and 0.658, while for soil moisture it ranged between 0.471 and 0.494. These findings suggest that the LSM yields comparable results when utilizing JRA-55, MODIS, or GSMaP. Interestingly, river output from the three products exhibited distinct characteristics varying from GSMaP to JRA-55 and MODIS. For river discharge, the correlation coefficient ranged from 0.494 to 0.519, the root mean square error ranged from 3,730 m3/s to 6,330 m3/s, and the mean absolute error ranged from 3,000 m3/s to 5,160 m3/s among the different forcing versions. The overall bias in river discharge from GSMaP was 1,570 m3/s, in contrast to −589 m3/s for JRA-55 and −200 m3/s for MODIS. These metrics demonstrate that the TE system is capable of generating practical land surface and river products, highlighting differences arising from the use of various types of forcing data. This comprehensive system would be valuable for monitoring water-related movements, predicting disasters, and contributing to sophisticated water resource management. Regarding its application, the TE system has been included in the World Meteorological Organization as a Global Hydrological Modelling System. All TE-Global products can be freely accessed through File Transfer Protocol.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用物理模型和卫星气象数据的新一代水文条件模拟器
由于观测条件的限制,在任何特定时刻确定陆地上水的分布和动态都是一项重大挑战。因此,随着地表模型(LSMs)的进步,数值模拟已成为水文研究中越来越精确和有效的方法。然而,能够以接近实时的方式表示多个地表参数的系统却非常稀缺。在本研究中,我们介绍了一种创新的陆地表面和河流模拟系统,称为 "今天的地球"(TE),它能近实时生成近地表环境的状态和通量值,并提供多种输出。TE 目前有三个版本,按所使用的强迫数据区分:JRA-55 版本采用日本 55 年再分析数据(JRA-55,1958 年至今);GSMaP 版本采用全球降水卫星图(GSMaP,2001 年至今);MODIS 版本采用中分辨率成像分光仪(MODIS,2003 年至今)。通过这些长期强迫数据集,可以输出 1958 年的 JRA-55 版本、2001 年的 GSMaP 版本和 2003 年的 MODIS 版本。为了实时提供全球范围内的水和能量值,TE 系统采用了水平分辨率为 0.5°的 LSM 地表相互作用和径流最小高级处理(MATSIRO)(Takata 等人,2003 年,https://doi.org/10.1016/s0921-8181(03)00030-4;Yamazaki 等人,2011 年,https://doi.org/10.1029/2010wr009726),以及水平分辨率为 0.25°的河流路由模型 CaMa-Flood(Yamazaki 等人,2011 年,https://doi.org/10.1029/2010wr009726)。在所有三个版本中,陆地表面和河流产品均以 3 小时、日和月为间隔提供。TE 的一个显著特点是能够近实时发布状态和流量参数,为水文研究的各个方面提供了便利。除了介绍 TE-Global 的一般特性外,本研究还考察了 2003 年至 2021 年期间雪深、土壤水分和河流排水量数据在日间隔上的性能,并对 2003 年至 2016 年期间的数据进行了验证。在比较雪深结果时,相关系数介于 0.644 和 0.658 之间,而土壤水分的相关系数介于 0.471 和 0.494 之间。这些结果表明,当使用 JRA-55、MODIS 或 GSMaP 时,LSM 得出的结果具有可比性。有趣的是,从 GSMaP 到 JRA-55 和 MODIS,三种产品的河流输出结果呈现出不同的特征。就河流排放量而言,在不同的强迫版本中,相关系数从 0.494 到 0.519 不等,均方根误差从 3,730 立方米/秒到 6,330 立方米/秒不等,平均绝对误差从 3,000 立方米/秒到 5,160 立方米/秒不等。全球降水测绘卫星的河流排水量总体偏差为 1,570 立方米/秒,而 JRA-55 为-589 立方米/秒,MODIS 为-200 立方米/秒。这些指标表明,TE 系统能够生成实用的陆地表面和河流产品,突出显示了使用各种类型的强迫数据所产生的差异。这一综合系统对于监测与水有关的运动、预测灾害以及促进水资源的精细化管理非常有价值。在应用方面,TE 系统已被世界气象组织列为全球水文模拟系统。可以通过文件传输协议免费访问 TE 全球的所有产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
期刊最新文献
Can Large Strains Be Accommodated by Small Faults: “Brittle Flow of Rocks” Revised 3-D Subsurface Geophysical Modeling of the Charity Shoal Structure: A Probable Late Proterozoic-Early Paleozoic Simple Impact Structure in Eastern Lake Ontario Study on Acoustic Variability Affected by Upper Ocean Dynamics in South Eastern Arabian Sea Monthly Prediction on Summer Extreme Precipitation With a Deep Learning Approach: Experiments Over the Mid-To-Lower Reaches of the Yangtze River A New Generation of Hydrological Condition Simulator Employing Physical Models and Satellite-Based Meteorological Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1