A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis

Nurettin Sezer , Sertac Bayhan , Ugur Fesli , Antonio Sanfilippo
{"title":"A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis","authors":"Nurettin Sezer ,&nbsp;Sertac Bayhan ,&nbsp;Ugur Fesli ,&nbsp;Antonio Sanfilippo","doi":"10.1016/j.mset.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen has attracted growing research interest due to its exceptionally high energy per mass content and being a clean energy carrier, unlike the widely used hydrocarbon fuels. With the possibility of long-term energy storage and re-electrification, hydrogen promises to promote the effective utilization of renewable and sustainable energy resources. Clean hydrogen can be produced through a renewable-powered water electrolysis process. Although alkaline water electrolysis is currently the mature and commercially available electrolysis technology for hydrogen production, it has several shortcomings that hinder its integration with intermittent and fluctuating renewable energy sources. The proton exchange membrane water electrolysis (PEMWE) technology has been developed to offer high voltage efficiencies at high current densities. Besides, PEMWE cells are characterized by a fast system response to fluctuating renewable power, enabling operations at broader partial power load ranges while consistently delivering high-purity hydrogen with low ohmic losses. Recently, much effort has been devoted to improving the efficiency, performance, durability, and economy of PEMWE cells. The research activities in this context include investigations of different cell component materials, protective coatings, and material characterizations, as well as the synthesis and analysis of new electrocatalysts for enhanced electrochemical activity and stability with minimized use of noble metals. Further, many modeling studies have been reported to analyze cell performance considering cell electrochemistry, overvoltage, and thermodynamics. Thus, it is imperative to review and compile recent research studies covering multiple aspects of PEMWE cells in one literature to present advancements and limitations of this field. This article offers a comprehensive review of the state-of-the-art of PEMWE cells. It compiles recent research on each PEMWE cell component and discusses how the characteristics of these components affect the overall cell performance. In addition, the electrochemical activity and stability of various catalyst materials are reviewed. Further, the thermodynamics and electrochemistry of electrolytic water splitting are described, and inherent cell overvoltage are elucidated. The available literature on PEMWE cell modeling, aimed at analyzing the performance of PEMWE cells, is compiled. Overall, this article provides the advancements in cell components, materials, electrocatalysts, and modeling research for PEMWE to promote the effective utilization of renewable but intermittent and fluctuating energy in the pursuit of a seamless transition to clean energy.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 44-65"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000168/pdfft?md5=9a4aa9d84edb6ff44dfb3c1e41064537&pid=1-s2.0-S2589299124000168-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299124000168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen has attracted growing research interest due to its exceptionally high energy per mass content and being a clean energy carrier, unlike the widely used hydrocarbon fuels. With the possibility of long-term energy storage and re-electrification, hydrogen promises to promote the effective utilization of renewable and sustainable energy resources. Clean hydrogen can be produced through a renewable-powered water electrolysis process. Although alkaline water electrolysis is currently the mature and commercially available electrolysis technology for hydrogen production, it has several shortcomings that hinder its integration with intermittent and fluctuating renewable energy sources. The proton exchange membrane water electrolysis (PEMWE) technology has been developed to offer high voltage efficiencies at high current densities. Besides, PEMWE cells are characterized by a fast system response to fluctuating renewable power, enabling operations at broader partial power load ranges while consistently delivering high-purity hydrogen with low ohmic losses. Recently, much effort has been devoted to improving the efficiency, performance, durability, and economy of PEMWE cells. The research activities in this context include investigations of different cell component materials, protective coatings, and material characterizations, as well as the synthesis and analysis of new electrocatalysts for enhanced electrochemical activity and stability with minimized use of noble metals. Further, many modeling studies have been reported to analyze cell performance considering cell electrochemistry, overvoltage, and thermodynamics. Thus, it is imperative to review and compile recent research studies covering multiple aspects of PEMWE cells in one literature to present advancements and limitations of this field. This article offers a comprehensive review of the state-of-the-art of PEMWE cells. It compiles recent research on each PEMWE cell component and discusses how the characteristics of these components affect the overall cell performance. In addition, the electrochemical activity and stability of various catalyst materials are reviewed. Further, the thermodynamics and electrochemistry of electrolytic water splitting are described, and inherent cell overvoltage are elucidated. The available literature on PEMWE cell modeling, aimed at analyzing the performance of PEMWE cells, is compiled. Overall, this article provides the advancements in cell components, materials, electrocatalysts, and modeling research for PEMWE to promote the effective utilization of renewable but intermittent and fluctuating energy in the pursuit of a seamless transition to clean energy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子交换膜电解水技术最新进展综述
与广泛使用的碳氢化合物燃料不同,氢气是一种清洁的能源载体,其单位质量的能量特别高,因此吸引了越来越多的研究兴趣。由于氢气可以长期储存能量并实现再电气化,因此有望促进可再生和可持续能源的有效利用。清洁氢气可通过可再生动力水电解工艺生产。虽然碱性水电解是目前成熟的商业化制氢电解技术,但它存在一些缺陷,阻碍了它与间歇性和波动性可再生能源的整合。质子交换膜水电解(PEMWE)技术的开发目的是在高电流密度下提供高电压效率。此外,质子交换膜水电解槽的特点是系统对波动的可再生能源电力响应迅速,可在更宽的部分电力负荷范围内运行,同时以低欧姆损耗持续提供高纯度氢气。最近,人们致力于提高 PEMWE 电池的效率、性能、耐用性和经济性。这方面的研究活动包括调查不同的电池组件材料、保护涂层和材料特性,以及合成和分析新型电催化剂,以提高电化学活性和稳定性,同时尽量减少贵金属的使用。此外,还有许多建模研究报告,从电池电化学、过电压和热力学角度分析电池性能。因此,在一篇文献中回顾和汇编涉及 PEMWE 电池多个方面的最新研究成果,以介绍该领域的进步和局限性是非常必要的。本文全面回顾了 PEMWE 电池的最新进展。文章汇编了有关 PEMWE 电池各组件的最新研究成果,并讨论了这些组件的特性如何影响电池的整体性能。此外,还综述了各种催化剂材料的电化学活性和稳定性。此外,还介绍了电解水分裂的热力学和电化学原理,并阐明了电池固有的过电压。文章汇编了有关 PEMWE 电池建模的现有文献,旨在分析 PEMWE 电池的性能。总之,本文介绍了 PEMWE 在电池组件、材料、电催化剂和建模研究方面的进展,以促进有效利用可再生但间歇性和波动性能源,实现向清洁能源的无缝过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
期刊最新文献
Li-S-B Glass-Ceramics: A Novel electrode materials for energy storage technology Selective hydrogenation of 1,3-butadiene to butenes on ceria-supported Pd, Ni and PdNi catalysts: Combined experimental and DFT outlook Compositing LaSrMnO3 perovskite and graphene oxide nanoribbons for highly stable asymmetric electrochemical supercapacitors Facile synthesis and electrochemical performance of bacterial cellulose/reduced graphene oxide/NiCo-layered double hydroxide composite film for self-standing supercapacitor electrode A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1