A numerical consideration on the correlation between magnitude of earthquakes and current intensity causing ULF electromagnetic wave emission

IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Radio Science Pub Date : 2024-07-01 DOI:10.1029/2023RS007923
Ryota Kimura;Yoshiaki Ando;Leo Kukiyama;Tomoya Masuzawa;Katsumi Hattori;Masashi Hayakawa
{"title":"A numerical consideration on the correlation between magnitude of earthquakes and current intensity causing ULF electromagnetic wave emission","authors":"Ryota Kimura;Yoshiaki Ando;Leo Kukiyama;Tomoya Masuzawa;Katsumi Hattori;Masashi Hayakawa","doi":"10.1029/2023RS007923","DOIUrl":null,"url":null,"abstract":"Numerous studies have reported anomalous ultralow frequency (ULF) electromagnetic fields preceding earthquakes. In this paper, we estimate the current intensity responsible for generating the earthquake-related ULF fields under the assumption that the origin is a current flowing at the hypocenter and that it has the same frequency dependence for all cases. To estimate current intensity, we perform ULF electromagnetic field simulations with an absorbing boundary condition developed in this study, taking into account the conductivity distribution of the Earth's crust. We analyze 11 earthquakes, including those that occurred in Loma Prieta, Spitak, Guam, Biak, Kagoshima, Iwateken Nairiku Hokubu, Izu swarm, Jammu and Kashmir, Alum Rock, Wenchuan, and L'Aquila. Our results show that, for nine out of the 11 events, there is a positive correlation between current intensity and earthquake magnitude, suggesting that the measured ULF fields originate from seismic activity and supporting our assumptions.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 7","pages":"1-15"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10622035/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous studies have reported anomalous ultralow frequency (ULF) electromagnetic fields preceding earthquakes. In this paper, we estimate the current intensity responsible for generating the earthquake-related ULF fields under the assumption that the origin is a current flowing at the hypocenter and that it has the same frequency dependence for all cases. To estimate current intensity, we perform ULF electromagnetic field simulations with an absorbing boundary condition developed in this study, taking into account the conductivity distribution of the Earth's crust. We analyze 11 earthquakes, including those that occurred in Loma Prieta, Spitak, Guam, Biak, Kagoshima, Iwateken Nairiku Hokubu, Izu swarm, Jammu and Kashmir, Alum Rock, Wenchuan, and L'Aquila. Our results show that, for nine out of the 11 events, there is a positive correlation between current intensity and earthquake magnitude, suggesting that the measured ULF fields originate from seismic activity and supporting our assumptions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地震震级与导致超低频电磁波发射的电流强度之间相关性的数值考量
许多研究报告了地震前的异常超低频(ULF)电磁场。在本文中,我们估算了产生地震相关超低频场的电流强度,假定其源头是在低中心流动的电流,并且在所有情况下都具有相同的频率依赖性。为了估算电流强度,我们使用本研究开发的吸收边界条件进行超低频电磁场模拟,同时考虑到地壳的电导率分布。我们分析了 11 次地震,包括洛马普列塔地震、斯皮塔克地震、关岛地震、比亚克地震、鹿儿岛地震、岩手县北陆地震、伊豆地震群、查谟和克什米尔地震、矾石地震、汶川地震和拉奎拉地震。我们的结果表明,在 11 个事件中,有 9 个事件的电流强度与震级呈正相关,这表明测量到的超低频场源于地震活动,并支持我们的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radio Science
Radio Science 工程技术-地球化学与地球物理
CiteScore
3.30
自引率
12.50%
发文量
112
审稿时长
1 months
期刊介绍: Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.
期刊最新文献
Landmine detection using electromagnetic time reversalbased methods: 1. classical TR, iterative TR, DORT and TR-MUSIC Landmine detection using electromagnetic time reversal-based methods: 2. performance analysis of TR-MUSIC An assessment of HF radio wave propagation in antarctica for a radio link between McMurdo and south pole station Front matters Automatic extraction of VLF constant-frequency electromagnetic wave frequency based on an improved Vgg16-Unet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1