Josselin Ouf , Julian Osten , Wen Luo , Kavan Khaledi , Mohammadreza Jalali , Philip J. Vardon , Florian Amann
{"title":"Experimental and numerical analysis of injection-induced permeability changes in pre-existing fractures","authors":"Josselin Ouf , Julian Osten , Wen Luo , Kavan Khaledi , Mohammadreza Jalali , Philip J. Vardon , Florian Amann","doi":"10.1016/j.gete.2024.100576","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a combined laboratory and numerical investigation on the injection-induced permeability changes in pre-existing fractures. The analyses conducted were primarily based on the results of an innovative laboratory experiment designed to replicate the key mechanisms that occur during hydraulic stimulation of naturally fractured rocks and/or faulted zones. The experiment involved pressure-controlled fluid injection into a laboratory-scale pre-existing fracture within a granite block, which was subjected to true triaxial stress conditions. Rough and smooth fractures are investigated, and the results are discussed. Based on the experimental results, two contributing mechanisms were considered to describe the pressure-driven permeability changes in pre-existing fractures: (1) elastic opening/closure leading to a reversible permeability change, and (2) fracture sliding in shear mode, causing dilation and hence an irreversible permeability increase. With these assumptions, an aperture-dependent permeability function was adopted to couple the hydraulic flow with the mechanical deformations along the fracture. Subsequently, a 3D coupled hydro-mechanical model was developed to replicate fluid-injection tests conducted at various conditions, including different stress conditions and fracture surface roughness. The employed modeling framework effectively captured the experimental observations. Our results indicate that the maximum permeability increases twofold.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"39 ","pages":"Article 100576"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380824000431/pdfft?md5=c4afeec1de37a89834c5e3941557d927&pid=1-s2.0-S2352380824000431-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000431","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a combined laboratory and numerical investigation on the injection-induced permeability changes in pre-existing fractures. The analyses conducted were primarily based on the results of an innovative laboratory experiment designed to replicate the key mechanisms that occur during hydraulic stimulation of naturally fractured rocks and/or faulted zones. The experiment involved pressure-controlled fluid injection into a laboratory-scale pre-existing fracture within a granite block, which was subjected to true triaxial stress conditions. Rough and smooth fractures are investigated, and the results are discussed. Based on the experimental results, two contributing mechanisms were considered to describe the pressure-driven permeability changes in pre-existing fractures: (1) elastic opening/closure leading to a reversible permeability change, and (2) fracture sliding in shear mode, causing dilation and hence an irreversible permeability increase. With these assumptions, an aperture-dependent permeability function was adopted to couple the hydraulic flow with the mechanical deformations along the fracture. Subsequently, a 3D coupled hydro-mechanical model was developed to replicate fluid-injection tests conducted at various conditions, including different stress conditions and fracture surface roughness. The employed modeling framework effectively captured the experimental observations. Our results indicate that the maximum permeability increases twofold.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.