Evolution of purge with multi-sector, novel designs, and configurations of desiccant wheels: A technical review

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-07-25 DOI:10.1016/j.ijrefrig.2024.07.021
{"title":"Evolution of purge with multi-sector, novel designs, and configurations of desiccant wheels: A technical review","authors":"","doi":"10.1016/j.ijrefrig.2024.07.021","DOIUrl":null,"url":null,"abstract":"<div><p>This review provides a comprehensive summary of research pertaining to the purge section within desiccant wheels featuring multi-sector configurations. Additionally, it encompasses discussions on innovative wheel designs such as non-adiabatic desiccant wheels and the achievement of two-stage dehumidification from a single wheel employing multi-sector approaches. The review begins by providing a concise historical overview of the desiccant wheel, followed by a systematic classification of the research conducted in this area. Subsequently, various categorizations are presented in a logical sequence, offering a structured understanding of the subject matter. Central to the critical findings of this review is the identification of an optimal purge wheel sector angle, which not only decreases the energy consumption of the desiccant wheel but also significantly reduces the exit temperature of process air. Moreover, the review highlights the potential of achieving isothermal dehumidification through the utilization of non-adiabatic rotary desiccant wheels. Furthermore, the introduction of a multi-sector desiccant wheel is one of the key successes in obtaining two-stage dehumidification and getting multi-output like cooling, heating with dehumidification, and heating with humidification. These are all efficiently derived from a single wheel.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002615","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This review provides a comprehensive summary of research pertaining to the purge section within desiccant wheels featuring multi-sector configurations. Additionally, it encompasses discussions on innovative wheel designs such as non-adiabatic desiccant wheels and the achievement of two-stage dehumidification from a single wheel employing multi-sector approaches. The review begins by providing a concise historical overview of the desiccant wheel, followed by a systematic classification of the research conducted in this area. Subsequently, various categorizations are presented in a logical sequence, offering a structured understanding of the subject matter. Central to the critical findings of this review is the identification of an optimal purge wheel sector angle, which not only decreases the energy consumption of the desiccant wheel but also significantly reduces the exit temperature of process air. Moreover, the review highlights the potential of achieving isothermal dehumidification through the utilization of non-adiabatic rotary desiccant wheels. Furthermore, the introduction of a multi-sector desiccant wheel is one of the key successes in obtaining two-stage dehumidification and getting multi-output like cooling, heating with dehumidification, and heating with humidification. These are all efficiently derived from a single wheel.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多扇区、新颖设计和配置的干燥剂轮进行净化的演变:A TECHNICAL REVIEW{fr}ÉVOLUTION DE LA PURGE AVEC DES CONCEPTIONS MULTISECTORIELLES, NOUVELLES ET CONFIGURATIONS DE ROUES DESSICANTES:une revue technique
本综述全面总结了与多扇区配置的干燥剂转轮内的净化部分有关的研究。此外,它还讨论了创新的转轮设计,如非绝热干燥剂转轮和采用多扇区方法的单个转轮实现两级除湿。综述首先简要介绍了干燥剂转轮的历史,然后对这一领域的研究进行了系统分类。随后,按逻辑顺序介绍了各种分类,使读者对这一主题有一个结构性的了解。本综述重要发现的核心是确定最佳的净化轮扇形角,这不仅能降低干燥剂轮的能耗,还能显著降低工艺空气的出口温度。此外,综述还强调了通过利用非绝热旋转式干燥剂转轮实现等温除湿的潜力。此外,引入多扇区干燥剂转轮是获得两级除湿和多输出(如冷却、加热除湿和加热加湿)的关键成功因素之一。这些都可以通过单个转轮高效实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
期刊最新文献
Monitoring the heating energy performance of a heat wheel in a direct expansion air handling unit A centralized frost detection and estimation scheme for Internet-connected domestic refrigerators Research and thermal comfort analysis of the air conditioning system of the Ferris wheel car based on thermoelectric cooling Advanced model for a non-adiabatic capillary tube considering both subcooled liquid and non-equilibrium two-phase states of R-600a Quantitative detection of refrigerant charge faults in multi-unit air conditioning systems based on machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1