An Investigation into the Influence of Graphene Content on Achieving a High-Performance TiO2-Graphene Nanocomposite Supercapacitor.

IF 2.5 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemistryOpen Pub Date : 2024-07-31 DOI:10.1002/open.202400128
Negar Naghavi, Maisam Jalaly, Samira Mohammadi, S Morteza Mousavi-Khoshdel
{"title":"An Investigation into the Influence of Graphene Content on Achieving a High-Performance TiO<sub>2</sub>-Graphene Nanocomposite Supercapacitor.","authors":"Negar Naghavi, Maisam Jalaly, Samira Mohammadi, S Morteza Mousavi-Khoshdel","doi":"10.1002/open.202400128","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents the synthesis of TiO<sub>2</sub>-graphene nanocomposites with varying mass ratios of graphene (2.5, 5, 10, 20 wt. %) using a facile and cost-effective hydrothermal approach. By integrating TiO<sub>2</sub> nanoparticles with graphene, a nanomaterial characterized by a two-dimensional structure, unique electrical conductivity and high specific surface area, the resulting hybrid material shows promise for application in supercapacitors. The nanocomposite specimens were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman microscopy, field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Additionally, supercapacitive properties were investigated using a three-electrode setup by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests. Notably, the TiO<sub>2</sub>-20 wt. % rGO nanocomposite exhibited the highest specific capacitance of 624 F/g at 2 A/g, showcasing superior electrochemical performance. This specimen indicated a high rate capability and cyclic stability (93 % retention after 2000 cycles). Its remarkable energy density and power density of this sample designate it as a strong contender for practical supercapacitor applications.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400128","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the synthesis of TiO2-graphene nanocomposites with varying mass ratios of graphene (2.5, 5, 10, 20 wt. %) using a facile and cost-effective hydrothermal approach. By integrating TiO2 nanoparticles with graphene, a nanomaterial characterized by a two-dimensional structure, unique electrical conductivity and high specific surface area, the resulting hybrid material shows promise for application in supercapacitors. The nanocomposite specimens were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman microscopy, field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Additionally, supercapacitive properties were investigated using a three-electrode setup by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests. Notably, the TiO2-20 wt. % rGO nanocomposite exhibited the highest specific capacitance of 624 F/g at 2 A/g, showcasing superior electrochemical performance. This specimen indicated a high rate capability and cyclic stability (93 % retention after 2000 cycles). Its remarkable energy density and power density of this sample designate it as a strong contender for practical supercapacitor applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究石墨烯含量对实现高性能二氧化钛-石墨烯纳米复合材料超级电容器的影响
本研究采用简便、经济的水热法合成了不同石墨烯质量比(2.5、5、10、20 wt.%)的二氧化钛-石墨烯纳米复合材料。石墨烯是一种纳米材料,具有二维结构、独特的导电性和高比表面积等特点,通过将二氧化钛纳米颗粒与石墨烯结合,所产生的混合材料有望应用于超级电容器。研究人员通过 X 射线衍射 (XRD)、傅立叶变换红外光谱 (FTIR)、拉曼显微镜、场发射扫描电子显微镜 (FESEM) 和透射电子显微镜 (TEM) 对纳米复合材料试样进行了表征。此外,还使用三电极设置,通过循环伏安法(CV)、电静态充放电(GCD)和电化学阻抗谱(EIS)测试研究了超级电容特性。值得注意的是,在 2 A/g 条件下,TiO2-20 wt.该试样具有较高的速率能力和循环稳定性(2000 次循环后保持率为 93%)。该样品出色的能量密度和功率密度使其成为超级电容器实际应用的有力竞争者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemistryOpen
ChemistryOpen CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
4.30%
发文量
143
审稿时长
1 months
期刊介绍: ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.
期刊最新文献
Quantitative Spermidine Detection in Cosmetics using an Organic Transistor-based Chemical Sensor. Facile Determination of Aluminum Content in Industrial Brine by Investigating the Effects of Buffer Systems. Interplay of Na Substitution in Magnetic Interaction and Photocatalytic Properties of Ca1-xNaxTi0.5Ta0.5O3 Perovskite Nanoparticles. Oxidation of Cyclohexane to Cyclohexanol/Cyclohexanone Using Sol-Gel-Encapsulated Unspecific Peroxygenase from Agrocybe aegerita. Utilization of Cobalt and its Oxide/Hydroxide Mediated by Ionic Liquids/Deep Eutectic Solvents as Catalysts in Water Splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1