The research status and future direction of polyetheretherketone in dental implant -A comprehensive review.

IF 1.9 4区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE Dental materials journal Pub Date : 2024-09-28 Epub Date: 2024-07-31 DOI:10.4012/dmj.2024-076
Yaqi Hao, Changquan Shi, Yuwei Zhang, Rui Zou, Shaojie Dong, Chuncheng Yang, Lin Niu
{"title":"The research status and future direction of polyetheretherketone in dental implant -A comprehensive review.","authors":"Yaqi Hao, Changquan Shi, Yuwei Zhang, Rui Zou, Shaojie Dong, Chuncheng Yang, Lin Niu","doi":"10.4012/dmj.2024-076","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, dental implants primarily rely on the use of titanium and titanium alloys. However, the extensive utilization of these materials in clinical practice has unveiled various problems including stress shielding, corrosion, allergic reactions, cytotoxicity, and image artifacts. As a result, polyetheretherketone (PEEK) has emerged as a notable alternative due to its favorable mechanical properties, corrosion resistance, wear resistance, biocompatibility, radiation penetrability and MRI compatibility. Meanwhile, the advancement and extensive application of 3D printing technology has expanded the range of medical applications for PEEK, including artificial spines, skulls, ribs, shinbones, hip joints, and temporomandibular joints. In this review, we aim to assess the advantages and disadvantages of PEEK as a dental implant material, summarize the measures taken to address its shortcomings and their effects, and provide insight into the future potential of PEEK in dental implant applications, with the goal of offering guidance and reference for future research endeavors.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":"609-620"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2024-076","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, dental implants primarily rely on the use of titanium and titanium alloys. However, the extensive utilization of these materials in clinical practice has unveiled various problems including stress shielding, corrosion, allergic reactions, cytotoxicity, and image artifacts. As a result, polyetheretherketone (PEEK) has emerged as a notable alternative due to its favorable mechanical properties, corrosion resistance, wear resistance, biocompatibility, radiation penetrability and MRI compatibility. Meanwhile, the advancement and extensive application of 3D printing technology has expanded the range of medical applications for PEEK, including artificial spines, skulls, ribs, shinbones, hip joints, and temporomandibular joints. In this review, we aim to assess the advantages and disadvantages of PEEK as a dental implant material, summarize the measures taken to address its shortcomings and their effects, and provide insight into the future potential of PEEK in dental implant applications, with the goal of offering guidance and reference for future research endeavors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚醚醚酮在牙科植入物中的研究现状和未来方向--全面综述。
目前,牙科植入物主要依靠使用钛和钛合金。然而,这些材料在临床实践中的广泛使用暴露出了各种问题,包括应力屏蔽、腐蚀、过敏反应、细胞毒性和图像伪影。因此,聚醚醚酮(PEEK)因其良好的机械性能、耐腐蚀性、耐磨性、生物相容性、辐射穿透性和磁共振成像兼容性而成为一种显著的替代材料。与此同时,3D 打印技术的进步和广泛应用扩大了 PEEK 的医疗应用范围,包括人造脊柱、头骨、肋骨、胫骨、髋关节和颞下颌关节。在这篇综述中,我们旨在评估 PEEK 作为牙科植入材料的优缺点,总结针对其缺点所采取的措施及其效果,并深入探讨 PEEK 在牙科植入应用中的未来潜力,以期为未来的研究工作提供指导和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Dental materials journal
Dental materials journal 医学-材料科学:生物材料
CiteScore
4.60
自引率
4.00%
发文量
102
审稿时长
3 months
期刊介绍: Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.
期刊最新文献
Effects of repetitive insertion/removal and occlusal load on the retentive force of rest plate-I bar clasps made by selective laser melting. Shape reproducibility of retentive devices made of cast titanium. Bond strength of 4META-MMA-TBB resin to a CAD/CAM composite resin block and analysis of acetone-insoluble cured resin residues at adhesive interfaces. Effect of rosmarinic acid on microtensile bond strength of 1-step self-etch adhesive on artificial caries-affected dentine with or without NaOCl treatment: An in-vitro study. Rheological properties and handling characteristics of four injectable calcium hydroxide pastes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1