Inverse Modeling of Heterogeneous Structures in Electron Probe Microanalysis.

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Microscopy and Microanalysis Pub Date : 2024-08-21 DOI:10.1093/mam/ozae066
Silvia Richter, Gaurav Achuda, Philippe T Pinard, Tamme Claus, Manuel Torrilhon
{"title":"Inverse Modeling of Heterogeneous Structures in Electron Probe Microanalysis.","authors":"Silvia Richter, Gaurav Achuda, Philippe T Pinard, Tamme Claus, Manuel Torrilhon","doi":"10.1093/mam/ozae066","DOIUrl":null,"url":null,"abstract":"<p><p>Electron probe microanalysis (EPMA) is a powerful tool for chemical characterization of materials on a microscopic scale. However, EPMA has the drawback that its information volume has a spatial extent of some 100 nm to a few µm. With the introduction of new electron sources, i.e., Schottky Thermal Field and Cold Field Emitter, where the electron beam is focused down to a few nm, measurements can be nowadays performed on the sub-micrometer scale. The goal of the work is to reveal the chemical composition of structures smaller than the excitation volume. New strategies are presented where the acquisition is performed at different positions on the sample and as a scan across a fine structure by using one or more single beam energies. Besides the well-known Monte-Carlo simulation, a deterministic model is also used. The deterministic model is based on moment equations of the Boltzmann equation. Inverse modeling is presented for several case studies. Due to the highly complex nonlinearity of the inverse model, an ill-posed and well-posed problem is shown as well. Finally, the method is extended to reconstruct 2D structures, i.e., rectangular shaped particles, with heterogeneous composition on lateral and depth scale.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electron probe microanalysis (EPMA) is a powerful tool for chemical characterization of materials on a microscopic scale. However, EPMA has the drawback that its information volume has a spatial extent of some 100 nm to a few µm. With the introduction of new electron sources, i.e., Schottky Thermal Field and Cold Field Emitter, where the electron beam is focused down to a few nm, measurements can be nowadays performed on the sub-micrometer scale. The goal of the work is to reveal the chemical composition of structures smaller than the excitation volume. New strategies are presented where the acquisition is performed at different positions on the sample and as a scan across a fine structure by using one or more single beam energies. Besides the well-known Monte-Carlo simulation, a deterministic model is also used. The deterministic model is based on moment equations of the Boltzmann equation. Inverse modeling is presented for several case studies. Due to the highly complex nonlinearity of the inverse model, an ill-posed and well-posed problem is shown as well. Finally, the method is extended to reconstruct 2D structures, i.e., rectangular shaped particles, with heterogeneous composition on lateral and depth scale.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子探针显微分析中异质结构的逆建模。
电子探针显微分析(EPMA)是在微观尺度上对材料进行化学表征的强大工具。然而,EPMA 的缺点是其信息量的空间范围仅为 100 纳米到几微米。随着新电子源(即肖特基热场和冷场发射器)的引入,电子束可聚焦到几纳米,如今可在亚微米尺度上进行测量。这项工作的目标是揭示小于激发体积的结构的化学成分。我们提出了新的策略,即在样品的不同位置进行采集,并通过使用一个或多个单光束能量对精细结构进行扫描。除了众所周知的蒙特卡洛模拟外,还使用了确定性模型。确定性模型基于玻尔兹曼方程的矩方程。对几个案例研究进行了逆建模。由于反演模型具有高度复杂的非线性,因此也提出了一个问题。最后,该方法被扩展用于重建二维结构,即矩形颗粒,在横向和纵深尺度上具有异质成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
期刊最新文献
Operando Freezing Cryogenic Electron Microscopy of Active Battery Materials. Large-Angle Rocking Beam Electron Diffraction of Large Unit Cell Crystals Using Direct Electron Detector. Obtaining 3D Atomic Reconstructions from Electron Microscopy Images Using a Bayesian Genetic Algorithm: Possibilities, Insights, and Limitations. Utilization of Advanced Microscopy Techniques and Energy-dispersive X-ray Spectroscopy to Characterize Three Piper Species Related to Kava. Imaging and Segmenting Grains and Subgrains Using Backscattered Electron Techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1