Ehsan Vahidzadeh, Harshitha Rajashekhar, Saralyn Riddell, Kazi M Alam, Damini Vrushabendrakumar, Navneet Kumar, Karthik Shankar
{"title":"Sponge-shaped Au nanoparticles: a stand-alone metallic photocatalyst for driving the light-induced CO<sub>2</sub>reduction reaction.","authors":"Ehsan Vahidzadeh, Harshitha Rajashekhar, Saralyn Riddell, Kazi M Alam, Damini Vrushabendrakumar, Navneet Kumar, Karthik Shankar","doi":"10.1088/1361-6528/ad6998","DOIUrl":null,"url":null,"abstract":"<p><p>Coinage metal nanoparticles (NPs) enable plasmonic catalysis by generating hot carriers that drive chemical reactions. Making NPs porous enhances the adsorption of reactant molecules. We present a dewetting and dealloying strategy to fabricate porous gold nanoparticles (Au-Sponge) and compare their CO<sub>2</sub>photoreduction activity with respect to the conventional gold nanoisland (Au-Island) morphology. Porous gold nanoparticles exhibit an unusually broad and red-shifted plasmon resonance which is in agreement with the results of finite difference time domain (FDTD) simulations. The key insight of this work is that the multi-step reduction of CO<sub>2</sub>driven by short-lived hot carriers generated by the d → s interband transition proceeds extremely quickly as evidenced by the generation of methane. A 3.8-fold enhancement in the photocatalytic performance is observed for the Au-Sponge in comparison to the Au-Island. Electrochemical cyclic voltammetry measurements confirm the 2.5-fold increase in the surface area and roughness factor of the Au-Sponge sample due to its porous nature. Our results indicate that the product yield is limited by the amount of surface adsorbates i.e. reactant-limited. Isotope-labeled mass spectrometry using<sup>13</sup>CO<sub>2</sub>was used to confirm that the reaction product (<sup>13</sup>CH<sub>4</sub>) originated from CO<sub>2</sub>photoreduction. We also present the plasmon-mediated photocatalytic transformation of 4-aminothiophenol (PATP) into p,p'-dimercaptoazobenzene (DMAB) using Au-Sponge and Au-Island samples.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad6998","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coinage metal nanoparticles (NPs) enable plasmonic catalysis by generating hot carriers that drive chemical reactions. Making NPs porous enhances the adsorption of reactant molecules. We present a dewetting and dealloying strategy to fabricate porous gold nanoparticles (Au-Sponge) and compare their CO2photoreduction activity with respect to the conventional gold nanoisland (Au-Island) morphology. Porous gold nanoparticles exhibit an unusually broad and red-shifted plasmon resonance which is in agreement with the results of finite difference time domain (FDTD) simulations. The key insight of this work is that the multi-step reduction of CO2driven by short-lived hot carriers generated by the d → s interband transition proceeds extremely quickly as evidenced by the generation of methane. A 3.8-fold enhancement in the photocatalytic performance is observed for the Au-Sponge in comparison to the Au-Island. Electrochemical cyclic voltammetry measurements confirm the 2.5-fold increase in the surface area and roughness factor of the Au-Sponge sample due to its porous nature. Our results indicate that the product yield is limited by the amount of surface adsorbates i.e. reactant-limited. Isotope-labeled mass spectrometry using13CO2was used to confirm that the reaction product (13CH4) originated from CO2photoreduction. We also present the plasmon-mediated photocatalytic transformation of 4-aminothiophenol (PATP) into p,p'-dimercaptoazobenzene (DMAB) using Au-Sponge and Au-Island samples.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.