Livia Pinzoni, Maria Berica Rasotto, Clelia Gasparini
{"title":"Sperm performance in the race for fertilization, the influence of female reproductive fluid.","authors":"Livia Pinzoni, Maria Berica Rasotto, Clelia Gasparini","doi":"10.1098/rsos.240156","DOIUrl":null,"url":null,"abstract":"<p><p>In studies of sperm competition, particularly in external fertilizers, the importance of the fertilization environment on the paternity share among rival males often goes overlooked. The female reproductive fluid (FRF), produced and released by females, creates the microenvironment that sperm encounter on their quest for fertilization and can generate paternity biases by affecting key traits in sperm competition. Yet, whether there is a direct link between FRF effects on sperm traits and its effect on competitive fertilization dynamics remains to be explored. Here, using the zebrafish <i>Danio rerio</i>, we compare within-female paternity share among two competing males and predictors of fertilization success (i.e. sperm traits) in the presence/absence of FRF. Our results unequivocally reveal a direct link between the direction and magnitude of the effect of FRF on sperm traits and the change in the competitive fertilization success of each male. This study demonstrates that the FRF directly mediates post-mating female control through its differential effect on sperm performance and that the FRF's effect on sperm quality alone is sufficient to predict the magnitude of the fitness effects. These findings highlight the need to consider the role of FRF in fertilization, avoiding biases resulting from an exclusive focus on male intrinsic sperm quality.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289650/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240156","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In studies of sperm competition, particularly in external fertilizers, the importance of the fertilization environment on the paternity share among rival males often goes overlooked. The female reproductive fluid (FRF), produced and released by females, creates the microenvironment that sperm encounter on their quest for fertilization and can generate paternity biases by affecting key traits in sperm competition. Yet, whether there is a direct link between FRF effects on sperm traits and its effect on competitive fertilization dynamics remains to be explored. Here, using the zebrafish Danio rerio, we compare within-female paternity share among two competing males and predictors of fertilization success (i.e. sperm traits) in the presence/absence of FRF. Our results unequivocally reveal a direct link between the direction and magnitude of the effect of FRF on sperm traits and the change in the competitive fertilization success of each male. This study demonstrates that the FRF directly mediates post-mating female control through its differential effect on sperm performance and that the FRF's effect on sperm quality alone is sufficient to predict the magnitude of the fitness effects. These findings highlight the need to consider the role of FRF in fertilization, avoiding biases resulting from an exclusive focus on male intrinsic sperm quality.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.