Local-manifold-distance-based regression: an estimation method for quantifying dynamic biological interactions with empirical time series.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Royal Society Open Science Pub Date : 2024-07-31 eCollection Date: 2024-07-01 DOI:10.1098/rsos.231795
Kazutaka Kawatsu
{"title":"Local-manifold-distance-based regression: an estimation method for quantifying dynamic biological interactions with empirical time series.","authors":"Kazutaka Kawatsu","doi":"10.1098/rsos.231795","DOIUrl":null,"url":null,"abstract":"<p><p>Quantifying species interactions based on empirical observations is crucial for ecological studies. Advancements in nonlinear time-series analyses, particularly S-maps, are promising for high-dimensional and non-equilibrium ecosystems. S-maps sequentially perform a local linear model fitting to the time evolution of neighbouring points on the reconstructed attractor manifold, and the coefficients can approximate the Jacobian elements corresponding to interaction effects. However, despite that the advantages in nonlinear forecasting with noise-contaminated data, these methodologies have a limitation in the Jacobian estimation accuracy owing to non-equidistantly stretched local manifolds in the state space. Herein, we therefore introduced a local manifold distance (LMD) concept, a non-equidistant measure based on the multi-faceted state dependency. By integrating LMD with advanced computation techniques, we presented a robust and efficient analytical method, LMD-based regression (LMDr). To validate its advantages in prediction and Jacobian estimation, we analysed synthetic time series of model ecosystems with different noise levels and applied it to an experimental protozoan predator-prey system with established biological information. The robustness to noise was the highest for LMDr, which also showed a better correspondence to expected predator-prey interactions in the protozoan system. Thus, LMDr can be applied to study complex ecological networks under dynamic conditions.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.231795","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying species interactions based on empirical observations is crucial for ecological studies. Advancements in nonlinear time-series analyses, particularly S-maps, are promising for high-dimensional and non-equilibrium ecosystems. S-maps sequentially perform a local linear model fitting to the time evolution of neighbouring points on the reconstructed attractor manifold, and the coefficients can approximate the Jacobian elements corresponding to interaction effects. However, despite that the advantages in nonlinear forecasting with noise-contaminated data, these methodologies have a limitation in the Jacobian estimation accuracy owing to non-equidistantly stretched local manifolds in the state space. Herein, we therefore introduced a local manifold distance (LMD) concept, a non-equidistant measure based on the multi-faceted state dependency. By integrating LMD with advanced computation techniques, we presented a robust and efficient analytical method, LMD-based regression (LMDr). To validate its advantages in prediction and Jacobian estimation, we analysed synthetic time series of model ecosystems with different noise levels and applied it to an experimental protozoan predator-prey system with established biological information. The robustness to noise was the highest for LMDr, which also showed a better correspondence to expected predator-prey interactions in the protozoan system. Thus, LMDr can be applied to study complex ecological networks under dynamic conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部-芒福德-距离的回归:一种利用经验时间序列量化动态生物相互作用的估算方法。
根据经验观察量化物种间的相互作用对生态研究至关重要。非线性时间序列分析(尤其是 S-图)的进步对于高维和非平衡生态系统而言大有可为。S 映射依次对重建吸引流形上相邻点的时间演化进行局部线性模型拟合,其系数可近似于与相互作用效应相对应的雅各布元素。然而,尽管这些方法在噪声污染数据的非线性预测中具有优势,但由于状态空间中局部流形的非流畅性拉伸,雅各布估计的准确性受到限制。因此,我们引入了局部流形距离(LMD)概念,这是一种基于多方面状态依赖性的非流形测量方法。通过将局部流形距离与先进的计算技术相结合,我们提出了一种稳健高效的分析方法,即基于局部流形距离的回归(LMDr)。为了验证该方法在预测和雅各布估计方面的优势,我们分析了具有不同噪声水平的模型生态系统的合成时间序列,并将其应用于具有既定生物信息的实验性原生动物捕食者-猎物系统。LMDr 对噪声的鲁棒性最高,而且与原生动物系统中预期的捕食者与猎物之间的相互作用也有较好的对应关系。因此,LMDr 可用于研究动态条件下的复杂生态网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
期刊最新文献
Heliconius butterflies use wide-field landscape features, but not individual local landmarks, during spatial learning. Appreciation of singing and speaking voices is highly idiosyncratic. A first vocal repertoire characterization of long-finned pilot whales (Globicephala melas) in the Mediterranean Sea: a machine learning approach. Beyond bigrams: call sequencing in the common marmoset (Callithrix jacchus) vocal system. Enhancing biodiversity: historical ecology and biogeography of the Santa Catalina Island ground squirrel, Otospermophilus beecheyi nesioticus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1