{"title":"Understanding predictions of drug profiles using explainable machine learning models","authors":"Caroline König, Alfredo Vellido","doi":"10.1186/s13040-024-00378-w","DOIUrl":null,"url":null,"abstract":"The analysis of absorption, distribution, metabolism, and excretion (ADME) molecular properties is of relevance to drug design, as they directly influence the drug’s effectiveness at its target location. This study concerns their prediction, using explainable Machine Learning (ML) models. The aim of the study is to find which molecular features are relevant to the prediction of the different ADME properties and measure their impact on the predictive model. The relative relevance of individual features for ADME activity is gauged by estimating feature importance in ML models’ predictions. Feature importance is calculated using feature permutation and the individual impact of features is measured by SHAP additive explanations. The study reveals the relevance of specific molecular descriptors for each ADME property and quantifies their impact on the ADME property prediction. The reported research illustrates how explainable ML models can provide detailed insights about the individual contributions of molecular features to the final prediction of an ADME property, as an effort to support experts in the process of drug candidate selection through a better understanding of the impact of molecular features.","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"45 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00378-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of absorption, distribution, metabolism, and excretion (ADME) molecular properties is of relevance to drug design, as they directly influence the drug’s effectiveness at its target location. This study concerns their prediction, using explainable Machine Learning (ML) models. The aim of the study is to find which molecular features are relevant to the prediction of the different ADME properties and measure their impact on the predictive model. The relative relevance of individual features for ADME activity is gauged by estimating feature importance in ML models’ predictions. Feature importance is calculated using feature permutation and the individual impact of features is measured by SHAP additive explanations. The study reveals the relevance of specific molecular descriptors for each ADME property and quantifies their impact on the ADME property prediction. The reported research illustrates how explainable ML models can provide detailed insights about the individual contributions of molecular features to the final prediction of an ADME property, as an effort to support experts in the process of drug candidate selection through a better understanding of the impact of molecular features.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.