{"title":"A deep learning approach for classifying and predicting children's nutritional status in Ethiopia using LSTM-FC neural networks.","authors":"Getnet Bogale Begashaw, Temesgen Zewotir, Haile Mekonnen Fenta","doi":"10.1186/s13040-025-00425-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study employs a LSTM-FC neural networks to address the critical public health issue of child undernutrition in Ethiopia. By employing this method, the study aims classify children's nutritional status and predict transitions between different undernutrition states over time. This analysis is based on longitudinal data extracted from the Young Lives cohort study, which tracked 1,997 Ethiopian children across five survey rounds conducted from 2002 to 2016. This paper applies rigorous data preprocessing, including handling missing values, normalization, and balancing, to ensure optimal model performance. Feature selection was performed using SHapley Additive exPlanations to identify key factors influencing nutritional status predictions. Hyperparameter tuning was thoroughly applied during model training to optimize performance. Furthermore, this paper compares the performance of LSTM-FC with existing baseline models to demonstrate its superiority. We used Python's TensorFlow and Keras libraries on a GPU-equipped system for model training.</p><p><strong>Results: </strong>LSTM-FC demonstrated superior predictive accuracy and long-term forecasting compared to baseline models for assessing child nutritional status. The classification and prediction performance of the model showed high accuracy rates above 93%, with perfect predictions for Normal (N) and Stunted & Wasted (SW) categories, minimal errors in most other nutritional statuses, and slight over- or underestimations in a few instances. The LSTM-FC model demonstrates strong generalization performance across multiple folds, with high recall and consistent F1-scores, indicating its robustness in predicting nutritional status. We analyzed the prevalence of children's nutritional status during their transition from late adolescence to early adulthood. The results show a notable decline in normal nutritional status among males, decreasing from 58.3% at age 5 to 33.5% by age 25. At the same time, the risk of severe undernutrition, including conditions of being underweight, stunted, and wasted (USW), increased from 1.3% to 9.4%.</p><p><strong>Conclusions: </strong>The LSTM-FC model outperforms baseline methods in classifying and predicting Ethiopian children's nutritional statuses. The findings reveal a critical rise in undernutrition, emphasizing the need for urgent public health interventions.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"11"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00425-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study employs a LSTM-FC neural networks to address the critical public health issue of child undernutrition in Ethiopia. By employing this method, the study aims classify children's nutritional status and predict transitions between different undernutrition states over time. This analysis is based on longitudinal data extracted from the Young Lives cohort study, which tracked 1,997 Ethiopian children across five survey rounds conducted from 2002 to 2016. This paper applies rigorous data preprocessing, including handling missing values, normalization, and balancing, to ensure optimal model performance. Feature selection was performed using SHapley Additive exPlanations to identify key factors influencing nutritional status predictions. Hyperparameter tuning was thoroughly applied during model training to optimize performance. Furthermore, this paper compares the performance of LSTM-FC with existing baseline models to demonstrate its superiority. We used Python's TensorFlow and Keras libraries on a GPU-equipped system for model training.
Results: LSTM-FC demonstrated superior predictive accuracy and long-term forecasting compared to baseline models for assessing child nutritional status. The classification and prediction performance of the model showed high accuracy rates above 93%, with perfect predictions for Normal (N) and Stunted & Wasted (SW) categories, minimal errors in most other nutritional statuses, and slight over- or underestimations in a few instances. The LSTM-FC model demonstrates strong generalization performance across multiple folds, with high recall and consistent F1-scores, indicating its robustness in predicting nutritional status. We analyzed the prevalence of children's nutritional status during their transition from late adolescence to early adulthood. The results show a notable decline in normal nutritional status among males, decreasing from 58.3% at age 5 to 33.5% by age 25. At the same time, the risk of severe undernutrition, including conditions of being underweight, stunted, and wasted (USW), increased from 1.3% to 9.4%.
Conclusions: The LSTM-FC model outperforms baseline methods in classifying and predicting Ethiopian children's nutritional statuses. The findings reveal a critical rise in undernutrition, emphasizing the need for urgent public health interventions.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.