Haq S. Marifatul, Darwish Mohammed, Waheed Muhammad, Kumar Manoj, Siddiqui H. Manzer, Bussmann W. Rainer
{"title":"Predicting potential invasion risks of Leucaena leucocephala (Lam.) de Wit in the arid area of Saudi Arabia","authors":"Haq S. Marifatul, Darwish Mohammed, Waheed Muhammad, Kumar Manoj, Siddiqui H. Manzer, Bussmann W. Rainer","doi":"10.1007/s40333-024-0020-4","DOIUrl":null,"url":null,"abstract":"<p>The presence of invasive plant species poses a substantial ecological impact, thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary. This study uses maximum entropy (MaxEnt) modeling to forecast the likelihood of <i>Leucaena leucocephala</i> (Lam.) de Wit invasion in Saudi Arabia under present and future climate change scenarios. Utilizing the MaxEnt modeling, we integrated climatic and soil data to predict habitat suitability for the invasive species. We conducted a detailed analysis of the distribution patterns of the species, using climate variables and ecological factors. We focused on the important influence of temperature seasonality, temperature annual range, and precipitation seasonality. The distribution modeling used robust measures of area under the curve (AUC) and receiver-operator characteristic (ROC) curves, to map the invasion extent, which has a high level of accuracy in identifying appropriate habitats. The complex interaction that influenced the invasion of <i>L. leucocephala</i> was highlighted by the environmental parameters using Jackknife test. Presently, the actual geographic area where <i>L. leucocephala</i> was found in Saudi Arabia was considerably smaller than the theoretical maximum range, suggesting that it had the capacity to expand further. The MaxEnt model exhibited excellent prediction accuracy and produced reliable results based on the data from the ROC curve. Precipitation and temperature were the primary factors influencing the potential distribution of <i>L. leucocephala.</i> Currently, an estimated area of 216,342 km<sup>2</sup> in Saudi Arabia was at a high probability of invasion by <i>L. leucocephala.</i> We investigated the potential for increased invasion hazards in the future due to climate change scenarios (Shared Socioeconomic Pathways (SSPs) 245 and 585). The analysis of key climatic variables, including temperature seasonality and annual range, along with soil properties such as clay composition and nitrogen content, unveiled their substantial influence on the distribution dynamic of <i>L. leucocephala.</i> Our findings indicated a significant expansion of high risk zones. High-risk zones for <i>L. leucocephala</i> invasion in the current climate conditions had notable expansions projected under future climate scenarios, particularly evident in southern Makkah, Al Bahah, Madina, and Asir areas. The results, backed by thorough spatial studies, emphasize the need to reduce the possible ecological impacts of climate change on the spread of <i>L. leucocephala.</i> Moreover, the study provides valuable strategic insights for the management of invasion, highlighting the intricate relationship between climate change, habitat appropriateness, and the risks associated with invasive species. Proactive techniques are suggested to avoid and manage the spread of <i>L. leucocephala</i>, considering its high potential for future spread. This study enhances the overall comprehension of the dynamics of invasive species by combining modeling techniques with ecological knowledge. It also provides valuable information for decision-making to implement efficient conservation and management strategies in response to changing environmental conditions.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0020-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of invasive plant species poses a substantial ecological impact, thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary. This study uses maximum entropy (MaxEnt) modeling to forecast the likelihood of Leucaena leucocephala (Lam.) de Wit invasion in Saudi Arabia under present and future climate change scenarios. Utilizing the MaxEnt modeling, we integrated climatic and soil data to predict habitat suitability for the invasive species. We conducted a detailed analysis of the distribution patterns of the species, using climate variables and ecological factors. We focused on the important influence of temperature seasonality, temperature annual range, and precipitation seasonality. The distribution modeling used robust measures of area under the curve (AUC) and receiver-operator characteristic (ROC) curves, to map the invasion extent, which has a high level of accuracy in identifying appropriate habitats. The complex interaction that influenced the invasion of L. leucocephala was highlighted by the environmental parameters using Jackknife test. Presently, the actual geographic area where L. leucocephala was found in Saudi Arabia was considerably smaller than the theoretical maximum range, suggesting that it had the capacity to expand further. The MaxEnt model exhibited excellent prediction accuracy and produced reliable results based on the data from the ROC curve. Precipitation and temperature were the primary factors influencing the potential distribution of L. leucocephala. Currently, an estimated area of 216,342 km2 in Saudi Arabia was at a high probability of invasion by L. leucocephala. We investigated the potential for increased invasion hazards in the future due to climate change scenarios (Shared Socioeconomic Pathways (SSPs) 245 and 585). The analysis of key climatic variables, including temperature seasonality and annual range, along with soil properties such as clay composition and nitrogen content, unveiled their substantial influence on the distribution dynamic of L. leucocephala. Our findings indicated a significant expansion of high risk zones. High-risk zones for L. leucocephala invasion in the current climate conditions had notable expansions projected under future climate scenarios, particularly evident in southern Makkah, Al Bahah, Madina, and Asir areas. The results, backed by thorough spatial studies, emphasize the need to reduce the possible ecological impacts of climate change on the spread of L. leucocephala. Moreover, the study provides valuable strategic insights for the management of invasion, highlighting the intricate relationship between climate change, habitat appropriateness, and the risks associated with invasive species. Proactive techniques are suggested to avoid and manage the spread of L. leucocephala, considering its high potential for future spread. This study enhances the overall comprehension of the dynamics of invasive species by combining modeling techniques with ecological knowledge. It also provides valuable information for decision-making to implement efficient conservation and management strategies in response to changing environmental conditions.
期刊介绍:
The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large.
The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.